Macrowine 2021
IVES 9 IVES Conference Series 9 Maturation under different SO2 environments: the impact on amino acid and volatile profile for two white wines

Maturation under different SO2 environments: the impact on amino acid and volatile profile for two white wines

Abstract

EU countries are in the top 16 of the world’s wine producers. To respond to a public health concern, caused by SO2 excessive exposure, EU has required a warning in the products indicating that sulphites are present if concentrations are higher than 10mg/L and its reduction or replacement whenever possible. This additive is used as a preservative agent in the winemaking process, due to its antioxidative and antimicrobial properties[3]. Wine aroma depends on many factors, being grape variety and winemaking process that most contributes to volatile organic composition (VOC) found in wines where amino acid composition, due to their biosynthetic products play an important role. Also, during wine ageing VOCs can change depending on many factors such as temperature, pH or oxidation process[4]. In this work, the impact of different doses of SO2 (added after alcoholic fermentation) was evaluated on wine VOCs over time and amino acids content after 3 months over lees.

HS-SPME-GC/MS was used to identify and semi-quantify VOCs, and HPLC-DAD was used for amino acids quantification. Two white wines were studied: one varietal (Antão Vaz; AV) and one blend (BL) of Portuguese varieties. After being kept for 3 months over lees, wines were bottled and VOCs and amino acids were analysed after 3 and 6 months.

A total of 83 compounds were tentatively identified,70 compounds in monovarietal wine and 73 in the blend wine. The chemical functional groups observed were esters, alcohols, carboxylic acids, aldehydes and 12 miscellaneous compounds. When a Principal Component Analysis (PCA) was performed on VOCs semi-quantification of each wine it is observed that PCA plots present different trends throughout the factors under study. In Antão Vaz was attain lower samples distinction for different SO2 doses on sample with 3 and 12 months. However, for the evolution time of 6 months, samples were well separated. In this case, both factors seem to influence the distribution of samples with a similar weight. For the blend wine, a worse distribution of the samples was observed for evolution time of 3 and 6 months. This indicates that they might be more sensitive to SO2 doses and evolution time when compared with Antão Vaz wines. Regarding amino acids profile it was observed that maturation on lees lead to an increasing concentration of AA. However, Antão Vaz was more influenced by the SO2 doses applied.

DOI:

Publication date: September 13, 2021

Issue: Macrowine 2021

Type: Article

Citation

Related articles…

Influenza del sito di coltivazione nella espressione aromatica del Moscato liquoroso di Pantelleria

ln 1997, twenty six cultivation sites of cv. Muscat of Alexandria different for pedological conditions, altitude and exposition were selected through ail Pantelleria isle. ln each site, described and classified according to USDA Soil Taxonony and FAO Soil Classification methods, grapes, collected at technological ripening, were microvinificated, following a standard procedure which allowed to obtain the naturally sweet wine DOC Moscato di Pantelleria. Wines, five months after vinification, were analysed by gaschromatography.

From soil to canopy, the diversity of adaptation strategies  to abiotic constraints in grapevine

Climate change is here. One of the main consequences is an increase in the frequency and severity of abiotic stresses which mostly occur in a combined manner. Grapevine, which grows in a large diversity of pedo-climatic conditions, has presumably evolved different mechanisms to allow this widespread adaptation. Harnessing the genetic diversity in these mechanisms will be central to the future of viticulture in many traditional wine growing areas. The interactions between the scion and the rootstock through grafting add an additional level of diversity and adaptive potential to explore.
At the physiological level, these mechanisms are related to processes such as root system development and functioning (water and nutrient uptake), interactions with the soil microbiome, gas exchange regulation, hydraulic properties along the soil-plant-atmosphere continuum, reserve storage, short and long distance signaling mechanisms and plasticity for some of these traits.

Post-spring frost canopy development and fruit composition in cv. Barbera grapevines

One of the effects of warming trends is the advance of budburst, increasing the frequency of spring frost-related damage. In April 2021, a severe frost event affected central and northern italian viticulture. In a cv. Barbera vineyard located in the Colli Piacentini wine district, after such occurrence, vines were tracked and growth of primary bud shoots (PBS), secondary bud shoots (SBS), and suckers (SK) was monitored, as well as their fruitfulness and fruit composition. Vine performances were then compared to those of the previous year, when no post-budburst freezing temperatures occurred. The goal of the study was to evaluate the efficacy of SBS in restoring yield loss due to PBS injuries and analyze respective contribution to fruit composition.

HYDROXYTYROSOL PRODUCTION BY DIFFERENT YEAST STRAINS: SACCHAROMYCES AND NON-SACCHAROMYCES AND THE RELATION WITH THE NITROGEN CONSUMPTION

Hydroxytyrosol (HT) is a phenolic compound with extensive bioactive properties. It is present in olives, olive oil and wines. Its occurrence in wines is partly due to yeast synthetise tyrosol from tyrosine by the Ehrlich pathway, which is subsequently hydroxylated to .
The aim of the present work is to study how different yeast strains can influence in the HT production and, how the different nitrogen consumption of each strain can interfere the production of bioactive compounds.

Aroma chemical profiles characterization of wines produced with moristel grapes harvested at different time points

The wine aroma is constituted by hundred of volatile chemical compounds that depend on many viticultural and oenological factors.