Macrowine 2021
IVES 9 IVES Conference Series 9 Maturation under different SO2 environments: the impact on amino acid and volatile profile for two white wines

Maturation under different SO2 environments: the impact on amino acid and volatile profile for two white wines

Abstract

EU countries are in the top 16 of the world’s wine producers. To respond to a public health concern, caused by SO2 excessive exposure, EU has required a warning in the products indicating that sulphites are present if concentrations are higher than 10mg/L and its reduction or replacement whenever possible. This additive is used as a preservative agent in the winemaking process, due to its antioxidative and antimicrobial properties[3]. Wine aroma depends on many factors, being grape variety and winemaking process that most contributes to volatile organic composition (VOC) found in wines where amino acid composition, due to their biosynthetic products play an important role. Also, during wine ageing VOCs can change depending on many factors such as temperature, pH or oxidation process[4]. In this work, the impact of different doses of SO2 (added after alcoholic fermentation) was evaluated on wine VOCs over time and amino acids content after 3 months over lees.

HS-SPME-GC/MS was used to identify and semi-quantify VOCs, and HPLC-DAD was used for amino acids quantification. Two white wines were studied: one varietal (Antão Vaz; AV) and one blend (BL) of Portuguese varieties. After being kept for 3 months over lees, wines were bottled and VOCs and amino acids were analysed after 3 and 6 months.

A total of 83 compounds were tentatively identified,70 compounds in monovarietal wine and 73 in the blend wine. The chemical functional groups observed were esters, alcohols, carboxylic acids, aldehydes and 12 miscellaneous compounds. When a Principal Component Analysis (PCA) was performed on VOCs semi-quantification of each wine it is observed that PCA plots present different trends throughout the factors under study. In Antão Vaz was attain lower samples distinction for different SO2 doses on sample with 3 and 12 months. However, for the evolution time of 6 months, samples were well separated. In this case, both factors seem to influence the distribution of samples with a similar weight. For the blend wine, a worse distribution of the samples was observed for evolution time of 3 and 6 months. This indicates that they might be more sensitive to SO2 doses and evolution time when compared with Antão Vaz wines. Regarding amino acids profile it was observed that maturation on lees lead to an increasing concentration of AA. However, Antão Vaz was more influenced by the SO2 doses applied.

DOI:

Publication date: September 13, 2021

Issue: Macrowine 2021

Type: Article

Citation

Related articles…

Volatile Organic Compound markers of Botrytis cinerea infection in artificially inoculated intact grape berries

The addition of partially dehydrated grapes to enrich must composition for producing complex dry/sweet wines represents a traditional practice in several regions of the world. However, the environmental conditions of dehydration chambers may facilitate the infection of Botrytis cinerea Pers. by promoting disease and provoking large grape losses. B. cinerea attack can induce alterations in the profile of volatile organic compounds (VOCs), which could be detected by sensors specifically trained to detect infection/disease-related compounds. These sensors could facilitate the early detection of the infection, consequently allowing to adjust some dehydration parameters.

δ13C : A still underused indicator in precision viticulture  

The first demonstration of the interest of carbon isotope composition of sugars in grapevine, as an integrated indicator of vineyard water status, dates back to 2000 (Gaudillère et al., 1999; Van Leeuwen et al., 2001). Thanks to the isotopic discrimination of Carbon that takes place during plant photosynthesis, under hydric stress conditions, it is possible to accurately estimate the photosynthetic activity. Ever since, δ13C has been widely applied with success to zonation, terroir studies and vine physiology research, but is still not widely used by viticulturists. This is quite astonishing by considering the impact of global warming on viticulture and the need to improve water management, that would justify a widespread use of δ13C.
The lack of private laboratories proposing the analysis, the cost of the technology, as well as the long analytical delays, have been detrimental to its development. Some laboratories tried to overcome the analytical difficulties of isotopic analysis by using fourier transformed infrared spectroscopy, as a fast and cheap alternative to the official OIV method (IRMS). These claimed FTIR models have never been published or peer reviewed and cannot be considered robust. In this work, thanks to the recent acquisition of IRMS technology, new modern and robust applications of δ13C for viticulture are proposed. This includes the use of the analysis to make parcel separations at harvesting, the possibility to increase the precision of hydric stress cartography and the potential cost reduction when compared with Scholander pressure bomb analysis.

Anticipating consumer preference for low-alcohol wine: a machine learning analysis based on consumption habits and socio-demographics

The global wine consumption landscape is undergoing a transformation, marked by a growing trend towards reduced consumption and a preference for healthier lifestyles. In line with this shift, european union regulation (regulation eu 2021/2117) has recently redefined dealcoholized or partially dealcoholized wine within the wine category.

REDWINE project: use of Chlorella vulgaris to prevent biotic and abiotic stress in Palmela’s region, Portugal, vineyards

The new EU Green Deal aims to achieve GHG emissions reduction by at least 55% by 2030 and a climate neutral EU economy by 2050.
REDWine concept will be realized through the establishment of an integrated Living Lab demonstrating the viability of the system at TRL 7. The Living Lab will be able to utilize 2 ton of fermentation off-gas/year (90% of total CO2 produced in the fermenter) and 80 m3 of liquid effluent (100% of the liquid effluent generated during fermenter washing) to produce 1 ton (dry weight) of Chlorella biomass/year. This biomass will be processed under a downstream extraction process to obtain added-value extracts and applied in food, cosmetic and agricultural end-products and to generate a new EcoWine. REDWine will focus on the recovery of off-gas from a 20.000L fermenter of red wine production existing in Adega Cooperativa de Palmela (ACP, located in Palmela, Portugal).

Un Système d’Informations à Références Spatiales sur le Vignoble. Un outil performant d’aide aux recherches sur la caractérisation des terroirs viticoles

The “Terroirs d’Anjou” project led by the Agronomy sector of the Vine and Wine Research Unit of the INRA center in Angers aims to characterize the viticultural terroirs in a study area which includes 29 municipalities in the Maine et Loire and cuts across the Anjou, Coteaux du layon and Coteaux de l’Aubance appellation areas.