Macrowine 2021
IVES 9 IVES Conference Series 9 Model ageing effects on the formation and evolution of minty terpenoids in red wine

Model ageing effects on the formation and evolution of minty terpenoids in red wine

Abstract

AIM: A pool of terpenoids possibly implicated in minty odours and in the appreciable refreshing sensation, has been identified in the ageing bouquet of red Bordeaux wines (Picard et al., 2016; Picard et al., 2017; Picard et al., 2018). Recent results on Corvina and Corvinone wines, revealed that these compounds already exist in young wines, but at lower concentrations than in aged ones (Lisanti et al., 2019), thus suggesting their formation during ageing. The mechanisms of this formation are still unclear. In some vegetal species, as mint, these terpenoids arise from an enzymatic limonene biotransformation pathway (Mahmoud & Croteau,2003), however their chemical origin from limonene or other precursors may not be excluded. In the present study, an experiment of model ageing of young wines was conducted in order to give a contribution to the comprehension of the origin of minty terpenoids in aged wines.

METHODS: Two 1-year-old wines of the Bordeaux area, Merlot and Cabernet franc, were warmed under controlled conditions, in order to mimic a part of ageing. Limonene, 1,8-cineole, menthone, pulegone, carvone, piperitone, mintlactone, menthyl acetate and neomenthyl acetate were determined at the beginning and after 2, 3, 7 and 11 days of accelerate ageing. The quantification of the minty terpenoids was performed by a new method that couples Headspace-SPME Arrow extraction with GC/MS-MS analysis.

RESULTS: A progressive decrease of limonene concentration (up to 76%) and an increase of the levels of piperitone (up to 200%) and mintlactone (up to 277%) were observed in both wines during the “accelerate ageing”. For the other compounds (1,8-cineole, menthone, pulegone, carvone) an initial increase, followed by a decrease was observed. 

CONCLUSIONS

Our results suggest that a chemical conversion of limonene into its derivatives may occur. Now the mechanisms must be elucidated to better understand the possible implication of these compounds in the complexity of aged wines bouquet.

DOI:

Publication date: September 13, 2021

Issue: Macrowine 2021

Type: Article

Authors

Maria Tiziana Lisanti

University of Naples Federico II, Department of Agricultural Sciences, Division of Vine and Wine Sciences, viale Italia, 83100, Avellino, Italy, Claudia, NIOI, University of Bordeaux, ISVV, EA 4577, INRA, USC 1366 OENOLOGIE, 33140 Villenave d’Ornon, France. Luigi, MOIO, University of Naples Federico II, Department of Agricultural Sciences, Division of Vine and Wine Sciences, viale Italia, 83100, Avellino, Italy. Gilles, de REVEL, University of Bordeaux, ISVV, EA 4577, INRA, USC 1366 OENOLOGIE, 33140 Villenave d’Ornon, France . Stephanie, MARCHAND, University of Bordeaux, ISVV, EA 4577, INRA, USC 1366 OENOLOGIE, 33140 Villenave d’Ornon, France.

Contact the author

Keywords

limonene derivatives, freshness, ageing bouquet, piperitone, terpenoids

Citation

Related articles…

Spatial suitability analysis for site selection of vineyards using biophysical models and computational intelligence

Developing a sustainable agricultural production system and acquiring the full potential of land resources requires employing land-use assessment. This entails knowledge of the climate, soil, and topography of the area of interest.

PREVALENCE OF OAK-RELATED AROMA COMPOUNDS IN PREMIUM WINES

Barrel fermentation and barrel-ageing of wine are commonly utilised practices in premium wine production. The wine aroma compounds related to barrel contact are varied and can enhance a range of wine aromas and flavours, such as ‘struck flint’, ‘caramel’, ‘red berry’, ‘toasty’ and ‘nutty’, as well as conventional oaky characters such as ‘vanilla’, ‘spice’, ‘smoky’ and ‘coconut’. A survey of commercially produced premium Shiraz, Cabernet Sauvignon, Pinot Noir and Chardonnay wines was conducted, assessing the prevalence of compounds that have been proposed as barrel-ageing markers¹ including oak lactones, volatile phenols, furanones, aldehydes, thiazoles2,3, phenylmethanethiol⁴ and 2-furylmethanethiol.⁵

Artificial intelligence-driven classification method of grapevine phenology using conventional RGB imaging

The phenological stage of the grapevine (Vitis vinifera L.) represents a fundamental element in vineyard management, since it determines key practices such as fertilization, irrigation, phytosanitary interventions and optimal harvest time (Mullins et al., 1992).

Managing soil health in vineyards: knowns and unknowns 

The use of soil conservation practices in wine grape production is becoming common throughout the world in response to an increased awareness of the value of soil health to maintain crop productivity and environmental quality. However, little information is available on the meaning of soil health within a viticultural context, and what soil properties should be targeted to achieve both the agronomic and environmental goals of wine grape producers. Conservation practices lead to increases in soil organic matter which may improve soil water retention, and increase soil C content therefore constituting a potential avenue to adapt to droughts and sequester C. Well-known management practices such as the use of cover crops, compost or no-till, although effective, seem to result in highly variable outcomes in soil organic matter and other soil health indicators. This variability is likely associated to the application of the practices in different soils and climates. Thus, integration of soil health building practices needs a thorough understanding of their efficacy under different conditions. Furthermore, additions of soil organic matter could trigger emissions of CO2 and N2O, a potent greenhouse gas that could represent a potential tradeoff of soil conservation practices. Finally, nutrient and water availability may be affected by the increase in soil organic matter having consequences for vine balance and grape quality.

Comprehensive lipid profiling of grape musts: impact of static settling

Lipids are crucial in alcoholic fermentation, influencing yeast metabolism by providing nutrients and modulating membrane composition [1]. They also serve as precursors to aromatic compounds shaping wine sensory profiles [2].