Macrowine 2021
IVES 9 IVES Conference Series 9 Model ageing effects on the formation and evolution of minty terpenoids in red wine

Model ageing effects on the formation and evolution of minty terpenoids in red wine

Abstract

AIM: A pool of terpenoids possibly implicated in minty odours and in the appreciable refreshing sensation, has been identified in the ageing bouquet of red Bordeaux wines (Picard et al., 2016; Picard et al., 2017; Picard et al., 2018). Recent results on Corvina and Corvinone wines, revealed that these compounds already exist in young wines, but at lower concentrations than in aged ones (Lisanti et al., 2019), thus suggesting their formation during ageing. The mechanisms of this formation are still unclear. In some vegetal species, as mint, these terpenoids arise from an enzymatic limonene biotransformation pathway (Mahmoud & Croteau,2003), however their chemical origin from limonene or other precursors may not be excluded. In the present study, an experiment of model ageing of young wines was conducted in order to give a contribution to the comprehension of the origin of minty terpenoids in aged wines.

METHODS: Two 1-year-old wines of the Bordeaux area, Merlot and Cabernet franc, were warmed under controlled conditions, in order to mimic a part of ageing. Limonene, 1,8-cineole, menthone, pulegone, carvone, piperitone, mintlactone, menthyl acetate and neomenthyl acetate were determined at the beginning and after 2, 3, 7 and 11 days of accelerate ageing. The quantification of the minty terpenoids was performed by a new method that couples Headspace-SPME Arrow extraction with GC/MS-MS analysis.

RESULTS: A progressive decrease of limonene concentration (up to 76%) and an increase of the levels of piperitone (up to 200%) and mintlactone (up to 277%) were observed in both wines during the “accelerate ageing”. For the other compounds (1,8-cineole, menthone, pulegone, carvone) an initial increase, followed by a decrease was observed. 

CONCLUSIONS

Our results suggest that a chemical conversion of limonene into its derivatives may occur. Now the mechanisms must be elucidated to better understand the possible implication of these compounds in the complexity of aged wines bouquet.

DOI:

Publication date: September 13, 2021

Issue: Macrowine 2021

Type: Article

Authors

Maria Tiziana Lisanti

University of Naples Federico II, Department of Agricultural Sciences, Division of Vine and Wine Sciences, viale Italia, 83100, Avellino, Italy, Claudia, NIOI, University of Bordeaux, ISVV, EA 4577, INRA, USC 1366 OENOLOGIE, 33140 Villenave d’Ornon, France. Luigi, MOIO, University of Naples Federico II, Department of Agricultural Sciences, Division of Vine and Wine Sciences, viale Italia, 83100, Avellino, Italy. Gilles, de REVEL, University of Bordeaux, ISVV, EA 4577, INRA, USC 1366 OENOLOGIE, 33140 Villenave d’Ornon, France . Stephanie, MARCHAND, University of Bordeaux, ISVV, EA 4577, INRA, USC 1366 OENOLOGIE, 33140 Villenave d’Ornon, France.

Contact the author

Keywords

limonene derivatives, freshness, ageing bouquet, piperitone, terpenoids

Citation

Related articles…

How the management of ph during winemaking affects acetaldehyde evolution and the formation of polymeric phenolics over the red wine aging

The aim of this study is to evaluate the role of pH on both the acetaldehyde chemistry and wine phenolics evolution over the aging period. In addition, the effect of both an early and late acidification was evaluated

Evolution of the amino acids content through grape ripening: Effect of foliar application of methyl jasmonate with or without urea

The parameters that determine the grape quality, and therefore the optimal harvest time, suffer variations during berry ripening, related to climate change, with the widely known problem of the gap between technological and phenolic maturities. However, there are few studies about its incidence on grape nitrogen composition. For this reason, the use of an elicitor, methyl jasmonate (MeJ), alone or with urea, is proposed as a tool to reduce climatic decoupling, allowing to establish the harvest time in order to achieve the optimum grape quality. The aim was to study the effect of MeJ and MeJ+Urea foliar applications on the evolution of Tempranillo amino acids content throughout the grape maturation. Three treatments were foliarly applied, at veraison and 7 days later: control (water), MeJ (10 mM) and MeJ+Urea (10 mM+6 kg N/ha). Grape samples were taken at five stages of maturation: day before the first and second applications, 15 days after the second application (pre-harvest), harvest day, and 15 days after harvest (post-harvest). The amino acids analysis of the samples was carried out by HPLC. Results showed that the evolution of amino acids was similar regardless of the treatment; however, foliar applications influenced the nitrogen compounds content, i.e., there was no qualitative effect but quantitative one. Most of the amino acids reached their maximum concentration in pre-harvest, being higher in grapes from the treatments than in the control. In general, no differences in grape amino acids content were observed between MeJ and MeJ+Urea treatments. Foliar applications with MeJ and MeJ+Urea enhanced the grape amino acids content, without affecting their profile, helping to optimize their quality and allowing to establish a more complete grape ripening standard. Therefore, MeJ and MeJ+Urea foliar applications can be a simple agronomic practice, which has shown promising results in order to enhance the grape quality.

Impact of changing climatic factors on physiological and vegetative growth

Scientific information on grapevine response to predicted levels of climate parameters is scarce and not sufficient to properly position the Wine Industry for the future. It is critical that the combined effects of increased temperature and CO2 on grapevines should be examined, without omitting the important link to soil water conditions. The purpose of this study is to quantify the effects of envisioned changes in climatic parameters on the functioning and growth of young grafted grapevines under controlled conditions, simulating expected future climate changes. Scientific knowledge of precisely how the newly-planted grapevine will react morphologically, anatomically and physiologically (at leaf, root and whole plant level) to the expected changes in important climatic parameters will enable producers to make better-informed decisions regarding terroir, cultivar and rootstock choices as well as the adaptation of current cultivation practices.

Transcriptomic analyses of wild Vitis species under drought conditions for next-generation breeding of grapevine rootstocks

Drought is one of the main challenges for viticulture in the context of climate change. Selecting drought-tolerant plant material can be an effective strategy for a sustainable viticulture.

Variations of soil attributes in vineyards influence their reflectance spectra

Knowledge on the reflectance spectrum of soil is potentially useful since it carries information on soil chemical composition that can be used to the planning of agricultural practices. If compared with analytical methods such as conventional chemical analysis, reflectance measurement provides non-destructive, economic, near real-time data. This paper reports results from reflectance measurements performed by spectroradiometry on soils from two vineyards in south Brazil. The vineyards are close to each other, are on different geological formations, but were subjected to the same management. The objective was to detect spectral differences between the two areas, correlating these differences to variations in their chemical composition, to assess the technique’s potential to predict soil attributes from reflectance data.To that end, soil samples were collected from ten selected vine parcels. Chemical analysis yield data on concentration of twenty-one soil attributes, and spectroradiometry was performed on samples. Chemical differences significant to a 95% confidence level between the two studied areas were found for six soil attributes, and the average reflectance spectra were separated by this same level along most of the observed spectral domain. Correlations between soil reflectance and concentrations of soil attributes were looked for, and for ten soil traits it was possible to define wavelength domains were reflectance and concentrations are correlated to confidence levels from 95% to 99%. Partial Least Squares Regression (PLSR) analyses were performed comparing measured and predicted concentrations, and for fifteen out of 21 soil traits we found Pearson correlation coefficients r > 0.8. These preliminary results, which have to be validated, suggest that variations of concentration in the investigated soil attributes induce differences in reflectance that can be detected by spectroradiometry. Applications of these observations include the assessment of the chemical content of soils by spectroradiometry as a fast, low-cost alternative to chemical analytical methods.