Macrowine 2021
IVES 9 IVES Conference Series 9 Chemical and colorimetric study of copigmentation between malvidin-3-O-glucoside and wine polyphenols and polysaccharides

Chemical and colorimetric study of copigmentation between malvidin-3-O-glucoside and wine polyphenols and polysaccharides

Abstract

AIM: The objective of this work was to perform a colorimetric study of the copigmentation between malvidin-3-O-glucoside, one of the main anthocyanins in red wines, and different wine phenolic compounds and polysaccharides. The present work also aimed to study the stabilization effect on the flavylium cation due to the copigmentation interactions with these compounds.

METHODS: Copigmentation was studied in model systems containing malvidin-3-O-glucoside and different copigments, including flavonols, flavanols, hydroxycinnamic and hydroxybenzoic acids and also polysaccharides at two pH values. The stability of the flavylium cation (25 ºC for 5 weeks) was assessed by HPLC-DAD in an acid medium whereas the study of copigmentation and its relevance on color was carried out at wine like pH (pH 3.6) by differential colorimetry using CIELAB parameters calculated from the whole visible spectra.

RESULTS: Important changes in the CIELAB parameters of the model systems were observed depending on the phenolic compound assayed as copigment, which could point out differences on the copigmentation interactions established. In the case of polysaccharides, it has been observed that they could play a role on the copigmentation effect. Moreover, copigmentation reactions seem to exert an influence on the flavylium cation stability by stabilizating the flavylium concentration during the length of the study or favoring the formation of anthocyanin-derived pigments. 

CONCLUSIONS

Color changes and stability of the flavylium cation due to copigmentation phenomenon between anthocyanin and phenolic compounds and/or polysaccharides can be related to the copigment structure.

DOI:

Publication date: September 13, 2021

Issue: Macrowine 2021

Type: Article

Authors

Bárbara Torres-Rochera 

Department of Analytical Chemistry, Nutrition and Food Sciences, Universidad de Salamanca, Salamanca, E37007, Spain. ,Ignacio GARCÍA-ESTÉVEZ, Department of Analytical Chemistry, Nutrition and Food Sciences, Universidad de Salamanca, Salamanca, E37007, Spain.  María Teresa ESCRIBANO-BAILÓN, Department of Analytical Chemistry, Nutrition and Food Sciences, Universidad de Salamanca, Salamanca, E37007, Spain.

Contact the author

Keywords

anthocyanins, phenolic compounds, polysaccharides, copigmentation, wine stability

Citation

Related articles…

La protection des terroirs viticoles dans l’AOC Côtes du Rhône (France)

[English version below]

Les terroirs viticoles, et plus particulièrement ceux des vignobles AOC, sont aujourd’hui menacés par de multiples agressions. Ces territoires sont non seulement l’outil de production

Grapevine under nutrient stress: exploring the adaptive mechanisms in response to iron deficiency conditions

In plants, stress due to nutrient deficiency can significantly impair their development and productivity.

Differences in the chemical composition and “fruity” aromas of Auxerrois sparkling wines from the use of cane and beet sugar during wine production.

The main objective of this study was to establish if beet sugar produces a different concentration of “fruity” volatile aroma compounds (VOCs), compared to cane sugar when used for second alcoholic fermentation of Auxerrois sparkling wines. Auxerrois base wine from the 2020 vintage was separated into two lots; half was fermented with cane sugar and half with beet sugar (both sucrose products and tested for sugar purity). These sugars were used in yeast acclimation (IOC 2007), and base wines for the second fermentation (12 bottles each). Base wines were manually bottled at the Cool Climate Oenology and Viticulture Institute (CCOVI) research winery. The standard chemical analysis took place at intervals of 0, 4 weeks, and 8 weeks post-bottling. Acidity and pH measurements were carried out by an auto-titrator. Residual Sugar (g/L) (glucose (g/L), fructose (g/L)), YAN (mg N/L), malic acid, and acetic acid (g/L) were analyzed by Megazyme assay kits. parameters were analyzed by Megazyme assay kits. Alcohol (% v/v) was assessed by GC-FID. VOC analysis of base wines, finished sparkling wines, as well as the two sugars in model sparkling wine solutions, was carried out by GC-MS. VOCs included ethyl octanoate, ethyl hexanoate, ethyl butanoate, ethyl decanoate, ethyl-2-methylbutyrate, ethyl-3-methylbutyrate, ethyl 2-methyl propanoate, ethyl 2- hydroxy propanoate, 1-hexanol, 2-phenylethan-1-ol, ethyl acetate, hexyl acetate, isoamyl acetate and 2-phenylethyl acetate.

Volatile organic compounds investigation in Müller Thurgau wines obtained from vineyard treated with biochar

Volatile Organic Compounds (VOCs) are responsible for the flavor and aroma of a wine. The sensory qualities of the wines depend not only on grape intrinsic characteristics, but also on extrinsic factors including the soil composition. Previous studies have shown that the application of pyrogenic carbon (biochar) can lead to a change in soil parameters. For that reason, one of the goals of the ERDF funded project «WoodUp» is the characterization and reutilization of the locally produced biochar for agricultural purposes.

Stomatal restrictions to photosynthesis in grapevine cultivars grown in a semiarid environment

Diurnal changes in the leaves of field-grown grapevine (Vitis vinifera L.) cultivars Syrah and Tempranillo were followed over summer 2009 with respect to gas exchanges. Net photosynthetic rate (AN) of both cultivars rapidly increased in the morning, decreasing slowly until the late afternoon, when reached the lowest values.