Macrowine 2021
IVES 9 IVES Conference Series 9 Impact of acidification by fumaric acid at vatting on Cabernet-Sauvignon wine during winemaking

Impact of acidification by fumaric acid at vatting on Cabernet-Sauvignon wine during winemaking

Abstract

AIM. Acidity of grape berries is lowered due to climate changes (1), resulting in musts and wines with higher pHs. These higher pHs induce microbiological instability and chemical modifications with damageable consequences on the color and the organoleptic qualities of the wines (2). To acidify musts, OIV authorizes different approaches such as the use of cation exchangers, treatment by electromembrane, microbiological acidification and chemical acidification. Chemical acidification, the most common, refers to the addition of lactic, malic and tartaric acids. Fumaric acid, known for its high acidifying power, its antimicrobial properties (3,4) but also its high availability, could be a good alternative to acidify musts chemically. Therefore, the present study aims at evaluating the impact of fumaric acid addition at vatting on wine quality in comparison with tartaric acid addition.

METHODS. Micro-winemakings were conducted with mature Cabernet Sauvignon grapes. Two treatments were applied at vatting in duplicate: 1.5g/L tartaric acid (TA) and 1.5g/L TA eq. fumaric acid. Three vats were untreated (controls). Oenological (pH, total acidity, tartaric, malic and lactic acids) and color (CIELAB) parameters, phenolic compounds (total polyphenol index, Folin-Ciocalteu, total free anthocyanins and total tannins) and antioxidant capacities (DPPH, CUPRAC, ORAC) were evaluated at vatting, end of alcoholic fermentation (AF) and malolactic fermentation (MLF). A ranking test and sensory profiles were realized on three-months wines after bottling.

RESULTS. Acid addition at vatting induced an immediate decrease of pH, an increase of total acidity and a change of color but at the end of MLF these changes were attenuated and even disappeared. Total phenolic compounds and antioxidant capacities in post-MLF wines were not or slightly affected by acidification. The major difference was observed for malolactic acid production during MLF. Indeed, wines treated with fumaric acid produced 20% more lactic acid than control and TA-acidified wines. 

CONCLUSIONS

Addition of FA at 1.5g/L tartaric acid eq. during vatting induced a 20% increased production of lactic acid in wine which did not allow a pH decrease or an increase of total acidity in resulting wine compared to control wine. To acidify wines, acid fumaric should be added at another step of winemaking. A current study is investigating FA addition at the end of AF and just before bottling.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Anne-Laure Gancel

Unité de recherche Œnologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, F33882 Villenave d’Ornon, France,Claire PAYAN, Unité de recherche Œnologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, F33882 Villenave d’Ornon, France and Hochschule Geisenheim University von Lade Straße, 65366 Geisenheim, Germany  Monika CHRISTMANN, Hochschule Geisenheim University von Lade Straße, 65366 Geisenheim, Germany  Pierre-Louis TEISSEDRE, Unité de recherche Œnologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, F33882 Villenave d’Ornon, France

Contact the author

Keywords

chemical acidification, fumaric acid, color, phenolic compounds, antioxidant capacity, sensory analysis

Citation

Related articles…

Use of multispectral satellite for monitoring vine water status in mediterranean areas

The development of new generations of multispectral satellites such as Sentinel-2 opens possibilities as to vine water status assessment (Cohen et al., 2019). Based on a three years field campaign, a model of Stem Water Potential (SWP) estimation on vine using four satellite bands in Red, Red-Edge, NIR and SWIR domains was developed (Laroche-Pinel et al., 2021). The model relies on SWP field measures done using a pressure chamber (Scholander et al., 1965), which is a common, robust and precise method to assess vine water status (Acevedo-Opazo et al., 2008). The model was mainly developed from from SWP measures on Syrah N (Laroche Pinel E., 2021).

A large scale monitoring was organized in different vineyards in the Mediterranean region in 2021. 10 varieties amongst the most represented in this area were monitored (Cabernet sauvignon N, Chardonnay B, Cinsault N, Grenache N, Merlot N, Mourvèdre N, Sauvignon B, Syrah N, Vermentino B, Viognier B). The model was used to produce water status maps from Sentinel-2 images, starting from the beginning of June (fruit set) up to September (harvest). The average estimated SWP for each vine was compared to actual field SWP measures done by wine growers or technicians during usual monitoring of irrigation programs. The correlations between mean estimated SWP and mean measured SWP were at the same level than expected by the model. (Laroche Pinel, 2021) The general SWP kinetics were comparable. The estimated SWP would have led to same irrigation decisions concerning the date of first irrigation in comparison with measured SWP.

Acevedo-Opazo, C., Tisseyre, B., Ojeda, H., Ortega-Farias, S., Guillaume, S. (2008). Is it possible to assess the spatial variability of vine water status? OENO One, 42(4), 203.
Cohen, Y., Gogumalla, P., Bahat, I., Netzer, Y., Ben-Gal, A., Lenski, I., … Helman, D. (2019). Can time series of multispectral satellite images be used to estimate stem water potential in vineyards? In Precision agriculture ’19, The Netherlands: Wageningen Academic Publishers, pp. 445–451.
Laroche-Pinel, E., Duthoit, S., Albughdadi, M., Costard, A. D., Rousseau, J., Chéret, V., & Clenet, H. (2021). Towards vine water status monitoring on a large scale using sentinel-2 images. remote sensing, 13(9), 1837.
Laroche-Pinel,E. (2021). Suivi du statut hydrique de la vigne par télédétection hyper et multispectrale. Thèse INP Toulouse, France.
Scholander, P.F., Bradstreet, E.D., Hemmingsen, E.A., & Hammel, H.T. (1965). Sap pressure in vascular plants: Negative hydrostatic pressure can be measured in plants. Science, 148(3668), 339–346.

Smartphone application use as a tool for water supply management

Uruguay had an average annual rainfall of 1200 mm characterized by a high monthly variability, which generates periods of water deficit and excess. The rational water management

Comparison of the skin resistance of several grape varieties in relation to their physico-chemical properties

The purpose of this study is to compare the skin resistance (SR) of the grapes with physico-chemical propertiess using a stong dataset and multidimentional statistical analysis .
A recent study has shown the role skin resistance plays against pest invasion but skin resistance could be a useful agronomic parameter, for example in the choice of the type of winemaking, by influencing the quantity of juice during crushing and maceration.

Grape solids: new advances on the understanding of their role in enological alcoholic fermentation

Residual grape solids (suspended particles) in white and rosé musts vary depending on the clarification pro-cess. These suspended solids contain lipids (more especially phytosterols) that are essential for yeast meta-bolism and viability during fermentation in anaerobic conditions.

Key learnings about the chemical bases of wine uniqueness and quality, essential companions for future developments

This presentation aims to demonstrate that the value attributed to wine as we today know it is based on three factors: 1) sensory balance, 2) personality, and 3) bioactivity.