Macrowine 2021
IVES 9 IVES Conference Series 9 Impact of acidification by fumaric acid at vatting on Cabernet-Sauvignon wine during winemaking

Impact of acidification by fumaric acid at vatting on Cabernet-Sauvignon wine during winemaking

Abstract

AIM. Acidity of grape berries is lowered due to climate changes (1), resulting in musts and wines with higher pHs. These higher pHs induce microbiological instability and chemical modifications with damageable consequences on the color and the organoleptic qualities of the wines (2). To acidify musts, OIV authorizes different approaches such as the use of cation exchangers, treatment by electromembrane, microbiological acidification and chemical acidification. Chemical acidification, the most common, refers to the addition of lactic, malic and tartaric acids. Fumaric acid, known for its high acidifying power, its antimicrobial properties (3,4) but also its high availability, could be a good alternative to acidify musts chemically. Therefore, the present study aims at evaluating the impact of fumaric acid addition at vatting on wine quality in comparison with tartaric acid addition.

METHODS. Micro-winemakings were conducted with mature Cabernet Sauvignon grapes. Two treatments were applied at vatting in duplicate: 1.5g/L tartaric acid (TA) and 1.5g/L TA eq. fumaric acid. Three vats were untreated (controls). Oenological (pH, total acidity, tartaric, malic and lactic acids) and color (CIELAB) parameters, phenolic compounds (total polyphenol index, Folin-Ciocalteu, total free anthocyanins and total tannins) and antioxidant capacities (DPPH, CUPRAC, ORAC) were evaluated at vatting, end of alcoholic fermentation (AF) and malolactic fermentation (MLF). A ranking test and sensory profiles were realized on three-months wines after bottling.

RESULTS. Acid addition at vatting induced an immediate decrease of pH, an increase of total acidity and a change of color but at the end of MLF these changes were attenuated and even disappeared. Total phenolic compounds and antioxidant capacities in post-MLF wines were not or slightly affected by acidification. The major difference was observed for malolactic acid production during MLF. Indeed, wines treated with fumaric acid produced 20% more lactic acid than control and TA-acidified wines. 

CONCLUSIONS

Addition of FA at 1.5g/L tartaric acid eq. during vatting induced a 20% increased production of lactic acid in wine which did not allow a pH decrease or an increase of total acidity in resulting wine compared to control wine. To acidify wines, acid fumaric should be added at another step of winemaking. A current study is investigating FA addition at the end of AF and just before bottling.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Anne-Laure Gancel

Unité de recherche Œnologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, F33882 Villenave d’Ornon, France,Claire PAYAN, Unité de recherche Œnologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, F33882 Villenave d’Ornon, France and Hochschule Geisenheim University von Lade Straße, 65366 Geisenheim, Germany  Monika CHRISTMANN, Hochschule Geisenheim University von Lade Straße, 65366 Geisenheim, Germany  Pierre-Louis TEISSEDRE, Unité de recherche Œnologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, F33882 Villenave d’Ornon, France

Contact the author

Keywords

chemical acidification, fumaric acid, color, phenolic compounds, antioxidant capacity, sensory analysis

Citation

Related articles…

Effect of maceration conditions during the winemaking of withered Corvina grapes on wine polyphenols and anthocyanins

Amarone is an Italian red wine with worldwide recognition and high added value. In Amarone wines, grapes undergo a withering process before vinification; this leads to a modification in the concentrations of sugars, acids, and secondary metabolites.

The sensory features of the landscapes

When someone watches a hilly landscape, the image beauty creates emotions and frames of mind not easily forgettable, but sometimes man’s intervention by means of soil movement and reduction of the natural biodiversity can significantly modify the landscape and consequently the above-mentioned emotions. One speculates if sensory appreciation of a wine may be strongly affected by psychological factor: landscape beauty.

IMPACT OF ACIDIFICATION AT BOTTLING BY FUMARIC ACID ON RED WINE AFTER 2 YEARS

Global warming is responsible for a lack of organic acid in grape berries, leading to wines with higher pH and lower titrable acidity. The chemical, microbiological and organoleptic equilibriums are impacted by this change of organic acid concentration. It is common practice to acidify the wine in order to prevent these imbalances that can lead to wine defects and early spoilage. Tartaric acid (TA) is most commonly used by winemaker for wine acidification purposes. Fumaric acid (FA), which is authorized by the OIV in its member states for the inhibition of malolactic fermentation, could also be used as a potential acidification candidate since it has a better acidifying power than tartaric acid.

100 guardians for 100 vines

G.r.a.s.p.o. Is not only the acronym for gruppo di ricerca per la salvaguardia e preservazione dell’originalità viticola di ogni territorio (‘research group for the safeguard and preservation of the originality of every territory’s grapes’), and is not just the italian synonym for ‘raspo’ (‘peduncle’) as treccani dictionary mentions: in the veneto dialect it is the whole bunch of grapes.

Controlling Wine Oxidation: Effects of pH on Key Reaction Rates

Acidity is often touted as a predictor of wine ageability, though surprisingly few studies have systematically investigated the chemical basis for this claim.