terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Decoupling the effects of water and heat stress on Sauvignon blanc berries

Decoupling the effects of water and heat stress on Sauvignon blanc berries

Abstract

Climate changes have important consequences in viticulture, heat waves accompanied by periods of drought are encountered more and more frequently. This study aims to evaluate the single and combined effect of water deficit and high temperatures on the thiol precursors biosynthesis in Sauvignon blanc grapes. For this purpose, a protocol has been developed for the cultivation of berries on a solid substrate. The berries, collected at three different times starting from veraison and grown in vitro, were subjected to 4 different treatments: control (C), water stress (WS), heat stress (HS), combined water and heat stress (WSHS). Water stress was simulated by adding abscisic acid to the culture medium, while different temperatures, respectively 25°C and 35°C, were managed with two illuminated climatic chambers. The expression of the main genes involved in the biosynthesis of thiol precursors, together with stress marker genes, was evaluated on the berries by qRT-PCR. Moreover, thiol precursors were analysed using an UHPLC/MS method. Results highlighted variable trends in the genes encoding GSTs (glutathione-S-transferase) and GGTs (γ-glutamyl-transferase), responsible for the synthesis of precursors. In detail, the VvGST3 gene was significantly down-regulated in thermal stresses, while HS and WSHS up-regulated the expression of VvGST2, VvGST5, VvGST25 and GGTs. Furthermore, the tested stress marker genes significantly confirm the success of both thermal and water stress conditions. The analysis of thiol precursors, showed that the concentration of Cys-3SH in the two last sampling dates well correlated with the expression of the above-mentioned genes. As opposite, a poor correlation was observed for Glut-3SH. Taken together these results allowed to identify a specific effect of heat and water stress on the regulation of the thiol precursors biosynthetic pathway in Sauvignon blanc berries during maturation.  

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Alberto Calderan1,2, Rachele Falchi2, Riccardo Braidotti2, Giorgio Alberti2, Andreja Vanzo3 and Paolo Sivilotti2

1Department of Life Sciences, University of Trieste, via Licio Giorgieri 10, 34127 Trieste, Italy
2Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle     Scienze 206, 33100 Udine, Italy
3Kmetijski Istitut Slovenje (KIS), Hacquetova ulica 17, SI-1000 Ljubljana, Slovenia

Contact the author*

Keywords

water stress, heat stress, climate change, berries culture

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Effects of heat and water stress on grapevine health: primary and secondary metabolism

Grapevine resilience to climate change has become one of the most pressing topics in the Viticulture & Enology field. Vineyard health demands understanding the mechanisms that explain the direct and indirect interactions between environmental stressors. The current climate change scenario, where drought and heat-wave are more frequent and intense, strongly demands improving our knowledge of environmental stresses. During a heatwave, the ambient temperature rises above the plant’s average tolerance threshold and, generally, above 35 oC plant’s adaptation to heat stress is activated.

Lipids at the crossroads of protection: lipid signalling in grapevine defence mechanisms

Understanding grapevine molecular processes and the underlying defence responses is vital for developing sustainable disease control strategies. Lipid signalling pathways, involving the synthesis and degradation of lipid molecules, have emerged as a key regulator in plant defence against pathogens. This study aims to elucidate the role of fatty acids and lipid signalling in grapevine’s defence response to P. viticola infection. The expression of lipid metabolism-related as well as lipid signalling genes was analysed, by qPCR, in three grapevine genotypes: Chardonnay (susceptible), Regent (tolerant) with Rpv3-1 resistance loci, and Sauvignac (resistant) harbouring a pyramid of Rpv12 and Rpv3-1 resistance loci.

Preliminary study of the influence of ripening on the polysaccharide content of different red grape varieties

Grape skin has a barrier and protective function in grapes. Cell wall of grape skins is mainly composed of polysaccharides such as pectins, celulloses and hemicelluloses and structural proteins. Terroir, variety and changes during ripening can affect the content of polysaccharides in grapes. The aim of this study was to evaluate the content of polysaccharides (PS) in grapes along the ripening process. Three red grape varieties were studied: Garnacha (G), Tempranillo (T) and Prieto Picudo (PP).

Use of UHPH to improve the implantation of non-Saccharomyces yeasts

Ultra High-Pressure Homogenization (UHPH) is a high-pressure pumping at 300 MPa (>200 MPa) with a subsequent depressurization against a highly resistant valve made of tungsten carbide covered by ceramic materials or carbon nanoparticles. The intense impact and shear efforts produce the nano-fragmentation of colloidal biopolymers including the elimination of microorganism (pasteurization or sterilization depending on in-valve temperature) and the inactivation of enzymes.

The environmental footprint of selected vineyard management practices: A case study from Logroño (La Rioja) Spain

Viticulture is globally important for socioeconomic and environmental reasons. The EU is globally leading grape and wine production, and Spain is among the top grape and wine producers. As climate change affects viticulture, mitigation and adaptation are crucial for protecting grape production. In this research work, data on viticultural management practices such as soil cultivation, irrigation, energy, machinery, plant protection and the use of fertilizers from vineyards located in Logroño (La Rioja) have been obtained.