Macrowine 2021
IVES 9 IVES Conference Series 9 Inhibition of reductive characters in wine by cu-organic acids: predicting the duration of protection

Inhibition of reductive characters in wine by cu-organic acids: predicting the duration of protection

Abstract

Cu organic acid complexes efficiently bind hydrogen sulfide in wine and therefore prevent its accumulation and subsequent reductive off-flavour [1]. This fraction of Cu can also bind methanethiol, the other main contributor to reductive wine characters, albeit with less efficient binding than for hydrogen sulfide [1]. However, during bottle aging of wine, the concentration of Cu organic acid complexes gradually decline and the sulfide-bound form of Cu increases. The point at which the Cu organic acid concentration is depleted signifies a potential for reductive aroma development to occur. The aim of this study is ascertain how long Cu organic acid complexes in wine can offer a protection against the reductive aroma compounds. High (0.6 mg/L), medium (0.3 mg/L) and no (0 mg/L) Cu(II) additions were made to Pinot Grigio and Chardonnay wines at bottling, and the bottled wines were then stored at 14 °C in darkness. Analysis was performed on the wines at 0, 2, 4, 8 and 12-14 months after bottling. Throughout bottle ageing process, the concentrations of three different Cu fractions, attributed to Cu organic acid complexes, Cu thiol complexes and sulfide-bound Cu, were monitored by stripping potentiometry and colorimetric methods. The free and salt-releasable concentration of hydrogen sulfide and methanethiol were determined by gas chromatography with chemiluminescene detection. Sensorial analysis was also performed on the wines after 12 months. During the first 2-months of bottle aging of all wines, the Cu-organic acid concentrations initially remained stable or increased, as total packed oxygen was consumed. Afterwards, during the low oxygen aging phase of the wines, the Cu-organic acid concentration declined exponentially with a concomitant increase in sulfide-bound Cu. These changes in sulfide-bound Cu were matched by an increase the salt-releasable hydrogen sulfide concentrations of the wines during aging. Free concentrations of hydrogen sulfide and methanethiol were only found to accumulate in wines without any Cu-organic acid present at bottling. For the Pinot Grigio without Cu-organic acid present at bottling (i.e., the no Cu addition treatment), the free methanethiol concentrations in the wine were above the aroma threshold and this wine was assessed as reductive. Alternatively, for the Pinot Grigio with Cu-organic acid complexes at bottling, only concentrations of free methanethiol below the aroma threshold were measured and the wine was not reductive. The decay in Cu-organic acid complexes, in the low oxygen aging phase of the wines, were found to follow first order kinetics that were similar for the Chardonnay and the Pinot Grigio. These results enable determination of the time-frame that Cu-organic acids can offer white wine protection against the potential accumulation of reductive aroma compounds.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Xinyi Zhang

National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, Australia,Nikolaos KONTOUDAKIS (Laboratory of Enology and Alcoholic Drinks, Department of Food Science and Human Nutrition, Agricultural University of Athens) John W. BLACKMAN (National Wine and Grape Industry Centre, Charles Sturt University) Andrew C. CLARK (National Wine and Grape Industry Centre, Charles Sturt University)

Contact the author

Keywords

cu organic acid complexes, hydrogen sulfide accumulation, white wine bottle ageing

Citation

Related articles…

Revealing the origins of old bordeaux wines using terpene quantification

The overall quality of fine wines is linked to the development of “bouquet” during wine bottle ageing (1). Bordeaux red wine ageing bouquet is defined by the association of several odours

Développement du concept d’Appellation d’Origine Contrôlée et d’Indication Géographique

L’identification des produits par le nom de la ville, de la région, de la province d’origine d’un produit tend aujourd’hui à se développer partout dans le monde et notamment dans le secteur agro-alimentaire, mais aussi dans les secteurs des produits artisanaux.

Thinner topsoil improves vine growth and fruit composition in Mid-Atlantic United States vineyards

Aim: The aim of this study was to investigate the impact of topsoil thickness on dormant pruning weights, cluster compactness, and fruit composition (°Brix, titratable acidity, pH) in the Mid-Atlantic of the United States. 

In-line sensing of grape juice press fractioning with UV-Vis spectroscopy

UV-Visible spectroscopy in conjunction with chemometrics, was successfully applied to objectively differentiate sparkling wine press juice fractions of Pinot noir. Two measurements methods were applied: reflectance using a fibre optic probe in-line and transmission using a benchtop spectrophotometer.

Vineyard nutrient budget and sampling protocols

Vineyard nutrient management is crucial for reaching production-specific quality standards, yet timely evaluation of nutrient status remains challenging. The existing sampling protocol of collecting vine tissue (leaves and/or petioles) at bloom or veraison is time-consuming. Additionally, this sampling practice is too late for in-season fertilizer applications (e.g. N is applied well before bloom). Therefore alternative early-season protocols are necessary to predict the vine nutrient demand for the upcoming season. The main goals of this project are to 1) optimize existing tissue sampling protocols; 2) determine the amount of nutrients removed at the end of the growing season.