Macrowine 2021
IVES 9 IVES Conference Series 9 Inhibition of reductive characters in wine by cu-organic acids: predicting the duration of protection

Inhibition of reductive characters in wine by cu-organic acids: predicting the duration of protection

Abstract

Cu organic acid complexes efficiently bind hydrogen sulfide in wine and therefore prevent its accumulation and subsequent reductive off-flavour [1]. This fraction of Cu can also bind methanethiol, the other main contributor to reductive wine characters, albeit with less efficient binding than for hydrogen sulfide [1]. However, during bottle aging of wine, the concentration of Cu organic acid complexes gradually decline and the sulfide-bound form of Cu increases. The point at which the Cu organic acid concentration is depleted signifies a potential for reductive aroma development to occur. The aim of this study is ascertain how long Cu organic acid complexes in wine can offer a protection against the reductive aroma compounds. High (0.6 mg/L), medium (0.3 mg/L) and no (0 mg/L) Cu(II) additions were made to Pinot Grigio and Chardonnay wines at bottling, and the bottled wines were then stored at 14 °C in darkness. Analysis was performed on the wines at 0, 2, 4, 8 and 12-14 months after bottling. Throughout bottle ageing process, the concentrations of three different Cu fractions, attributed to Cu organic acid complexes, Cu thiol complexes and sulfide-bound Cu, were monitored by stripping potentiometry and colorimetric methods. The free and salt-releasable concentration of hydrogen sulfide and methanethiol were determined by gas chromatography with chemiluminescene detection. Sensorial analysis was also performed on the wines after 12 months. During the first 2-months of bottle aging of all wines, the Cu-organic acid concentrations initially remained stable or increased, as total packed oxygen was consumed. Afterwards, during the low oxygen aging phase of the wines, the Cu-organic acid concentration declined exponentially with a concomitant increase in sulfide-bound Cu. These changes in sulfide-bound Cu were matched by an increase the salt-releasable hydrogen sulfide concentrations of the wines during aging. Free concentrations of hydrogen sulfide and methanethiol were only found to accumulate in wines without any Cu-organic acid present at bottling. For the Pinot Grigio without Cu-organic acid present at bottling (i.e., the no Cu addition treatment), the free methanethiol concentrations in the wine were above the aroma threshold and this wine was assessed as reductive. Alternatively, for the Pinot Grigio with Cu-organic acid complexes at bottling, only concentrations of free methanethiol below the aroma threshold were measured and the wine was not reductive. The decay in Cu-organic acid complexes, in the low oxygen aging phase of the wines, were found to follow first order kinetics that were similar for the Chardonnay and the Pinot Grigio. These results enable determination of the time-frame that Cu-organic acids can offer white wine protection against the potential accumulation of reductive aroma compounds.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Xinyi Zhang

National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, Australia,Nikolaos KONTOUDAKIS (Laboratory of Enology and Alcoholic Drinks, Department of Food Science and Human Nutrition, Agricultural University of Athens) John W. BLACKMAN (National Wine and Grape Industry Centre, Charles Sturt University) Andrew C. CLARK (National Wine and Grape Industry Centre, Charles Sturt University)

Contact the author

Keywords

cu organic acid complexes, hydrogen sulfide accumulation, white wine bottle ageing

Citation

Related articles…

Vine environment interaction as a method for land viticultural evaluation. An experience in Friuli Venezia Giulia (N-E of Italy)

For a long time environment was known as one of the most important factors to characterize the quality of wines but at the same time it appears very difficult to distinguish inside the “terroir” the role of the single factor. These remarks partially explain why methods for viticultural evaluation are often quite different (Amerine et al., 1944; Antoniazzi et al., 1986; Asselin et al., 1987; Astruc et al., 1980; Bonfils, 1977; Boselli, 1991; Colugnati, 1990; Costantinescu, 1967; Costantini et al., 1987; Dutt et al., 1981; Falcetti et al., 1992; Fregoni et al., 1992; Hidalgo, 1980; Intrieri et al., 1988; Laville, 1990; Morlat et al., 1991; Scienza et al., 1990; Shubert et al., 1987; Turri et al., 1991).

Implications of the nature of organic mulches used in vineyards on grapevine water status, yield, berry quality and biological soil health  

Climate emergency is going to affect the agricultural suistainability, wine grapes being probably one of the crops more sensitive to environmental constraints. In this context, mitigation strategies such as the revalorization of agricultural wastes are paramount to cope with the current challenges. The use of organic mulches has been reported to reduce soil water evaporation and improve vine water status, reduce soil erosion, and increase soil organic matter with little impact on berry quality. However, less is known about their effects on the microbiote of vineyards.

DETERMINATION OF FREE AMINO ACIDS, AMINO ACID POTENTIAL AND PROTEASE ACTIVITY IN THE LEES AND STILL WINES OF CHAMPAGNE

Prior to winemaking, organic or mineral nitrogen compound concentrations are usually measured in the vineyard and in grape musts. These indicators facilitate vine cultivation decisions, usually through yield or vigor. During vinification, yeast and bacteria metabolize nitrogen compounds in the musts in order to generate biomass. After fermentation, the microorganisms rerelease a part of this nitrogen as soluble compounds into the wines. Another part remains bound in the lees and can be lost during racking. The must’s natural nitrogen quantities, additional supplements during fermentation, and lees contact management enhance the release of nitrogen compounds to the wines. During ageing these nitrogen compounds – primarily the amino acids – are implicated in the generation of odorous compounds such as heterocycles(1).

Soil chemistry as a measure of the distinctiveness of american viticultural areas of the Columbia basin, USA

The Columbia Basin, a semi-arid region centered in the eastern part of Washington State, is the second largest wine grape growing region in the United States and presently contains 10 American Viticultural Areas

Molecular characterization of a variegated grapevine mutant cv Bruce’s Sport

Variegation, a frequently observed trait in plants, is characterized by the occurrence of white or discoloured plant tissue. This phenomenon is attributed to genetic mosaicism or chimerism, potentially impacting the epidermal (L1) and subepidermal (L2) cell layers. In grapevine, variegation manifests as white or paler leaf, flower, or berry tissues, often leading to stunted growth and impeded development. Despite its prevalence, variegation in grapevines remains understudied.