Macrowine 2021
IVES 9 IVES Conference Series 9 Inhibition of reductive characters in wine by cu-organic acids: predicting the duration of protection

Inhibition of reductive characters in wine by cu-organic acids: predicting the duration of protection

Abstract

Cu organic acid complexes efficiently bind hydrogen sulfide in wine and therefore prevent its accumulation and subsequent reductive off-flavour [1]. This fraction of Cu can also bind methanethiol, the other main contributor to reductive wine characters, albeit with less efficient binding than for hydrogen sulfide [1]. However, during bottle aging of wine, the concentration of Cu organic acid complexes gradually decline and the sulfide-bound form of Cu increases. The point at which the Cu organic acid concentration is depleted signifies a potential for reductive aroma development to occur. The aim of this study is ascertain how long Cu organic acid complexes in wine can offer a protection against the reductive aroma compounds. High (0.6 mg/L), medium (0.3 mg/L) and no (0 mg/L) Cu(II) additions were made to Pinot Grigio and Chardonnay wines at bottling, and the bottled wines were then stored at 14 °C in darkness. Analysis was performed on the wines at 0, 2, 4, 8 and 12-14 months after bottling. Throughout bottle ageing process, the concentrations of three different Cu fractions, attributed to Cu organic acid complexes, Cu thiol complexes and sulfide-bound Cu, were monitored by stripping potentiometry and colorimetric methods. The free and salt-releasable concentration of hydrogen sulfide and methanethiol were determined by gas chromatography with chemiluminescene detection. Sensorial analysis was also performed on the wines after 12 months. During the first 2-months of bottle aging of all wines, the Cu-organic acid concentrations initially remained stable or increased, as total packed oxygen was consumed. Afterwards, during the low oxygen aging phase of the wines, the Cu-organic acid concentration declined exponentially with a concomitant increase in sulfide-bound Cu. These changes in sulfide-bound Cu were matched by an increase the salt-releasable hydrogen sulfide concentrations of the wines during aging. Free concentrations of hydrogen sulfide and methanethiol were only found to accumulate in wines without any Cu-organic acid present at bottling. For the Pinot Grigio without Cu-organic acid present at bottling (i.e., the no Cu addition treatment), the free methanethiol concentrations in the wine were above the aroma threshold and this wine was assessed as reductive. Alternatively, for the Pinot Grigio with Cu-organic acid complexes at bottling, only concentrations of free methanethiol below the aroma threshold were measured and the wine was not reductive. The decay in Cu-organic acid complexes, in the low oxygen aging phase of the wines, were found to follow first order kinetics that were similar for the Chardonnay and the Pinot Grigio. These results enable determination of the time-frame that Cu-organic acids can offer white wine protection against the potential accumulation of reductive aroma compounds.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Xinyi Zhang

National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, Australia,Nikolaos KONTOUDAKIS (Laboratory of Enology and Alcoholic Drinks, Department of Food Science and Human Nutrition, Agricultural University of Athens) John W. BLACKMAN (National Wine and Grape Industry Centre, Charles Sturt University) Andrew C. CLARK (National Wine and Grape Industry Centre, Charles Sturt University)

Contact the author

Keywords

cu organic acid complexes, hydrogen sulfide accumulation, white wine bottle ageing

Citation

Related articles…

Evaluating Smoke Contaminants in Wine Using 13C-Labelled Barley as a Fuel Source

Wildfires are becoming more common in many areas of the world that are also associated with wine grape production, especially the Pacific northwest United States, Australia and even some areas of France.

Effects of wine versus de-alcoholised wine on the microbiota-gut-brain axis in a tau-pathology murine model of Alzheimer’s disease

Alzheimer’s Disease (AD) is the most common disorder associated with cognitive impairment and the main cause of dementia globally. Multiple evidence in the last decade suggest that the gut microbiome plays an important role in the pathogenesis and progression of AD via the microbiota-gut-brain axis, a network wherein microbiome and the central nervous system crosstalk via endocrine, immune, neural, and microbial metabolites signalling pathways.

Wine growing terroirs: management of potential. New issues at stake for AOCs in France

Terroirs represent a heritage that must be studied and managed with appropriate methods; recourse to agronomic and oenological sciences alone is necessary, but is in no way sufficient without the contribution of the humanities.

How to develop strategies of adaptation to climate change based on a foresight exercise?

Prospective studies raise a real intellectual interest for those who contribute to them or take cognizance of it. But they are often considered too difficult to operationalize

Development of bioprospecting tools for oenological applications

Wine is the result of a complex biochemical process. From a microbiological point of view, the grape berry is characterised by a heterogeneous microbiota composed of different microorganisms (yeasts, bacteria and filamentous fungi) which will play a predominant role in the quality of the final product. At this level, yeasts play a predominant role in the chemistry of wine, as they