Macrowine 2021
IVES 9 IVES Conference Series 9 The future of DMS precursors during alcoholic fermentation: impact of yeast assimilable nitrogen levels on the contents of DMSp in young wines

The future of DMS precursors during alcoholic fermentation: impact of yeast assimilable nitrogen levels on the contents of DMSp in young wines

Abstract

Some red wines develop a “bouquet” during ageing. This complex aroma is linked to quality by wine tasters1. The presence of dimethylsulfide (DMS) in those wines is implicated in the expression of “bouquet typicity”2. DMS is a result of the hydrolysis of its precursors. Several molecules, including S-methylmethionine, could constitute the precursors of DMS3. DMS can be liberated by alkaline hydrolysis and quantified by SPME-GC-MS4. The releasable DMS is designated by “DMSp”. The DMSp levels in grapes are 20 to 30 times higher than those observed in young wines5. Our question is : “What happens during the stages of fermentation?”First, DMSp levels were studied during a small-scale winemaking process and were measured in musts, in wine after alcoholic fermentation (AF) and after malolactic fermentation (MLF). Then, to understand the mechanism of the DMSp degradation, synthetic must was used with various levels of YAN and different pools of inorganic and organic nitrogen such as amino acids. Synthetic musts were supplemented by one of the known DMS precursor (S-methylmethionine), inoculated with S. cerevisiae and the fermentations were monitored by evaluating CO2 evolution.During AF, around 90% of DMSp is degraded by the action of yeast. The MLF consumed a little DMSp but it is negligible compared to AF. The link between DMSp and nitrogen would generate a variable consumption of DMSp during AF. Then, DMSp is consumed at the beginning of alcoholic fermentation during the yeast growth step and the level of consumption depends of the constitution of YAN. The several pools of nitrogen substances of YAN tested shows various results about the consumption or conservation of DMSp during AF.Finally, the assays in laboratory to try to control DMSp levels in young wine will help the winemakers to keep the ageing potential of red wine and maintain a high quality of wine.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Justine Laboyrie

University of Bordeaux, ISVV, EA 4577, INRA, USC 1366 OENOLOGIE, 33140 Villenave d’Ornon, France,Marina Bely, University of Bordeaux, ISVV, EA 4577, INRA, USC 1366 OENOLOGIE, 33140 Villenave d’Ornon, France Nicolas Le Menn, University of Bordeaux, ISVV, EA 4577, INRA, USC 1366 OENOLOGIE, 33140 Villenave d’Ornon, France Stéphanie Marchand, University of Bordeaux, ISVV, EA 4577, INRA, USC 1366 OENOLOGIE, 33140 Villenave d’Ornon, France

Contact the author

Keywords

wine ageing potential, dimethylsulfide, s-methylmethionine, alcoholic fermentation, yeast assimilable nitrogen

Citation

Related articles…

How climate change can modify the flavor of red Merlot and Cabernet-Sauvignon

he main goal of this research was to identify key aroma compounds linked with the maturity of grapes (ripe and overripe) and involved in grapes and wines with an intense dried fruits aroma. Odoriferous zones reminiscent of these aromas were detected by gas chromatography coupled with olfactometry (GC-O).

Proanthocyanin composition in new varieties from monastrell

AIM: Proanthocyanidins are responsible in an important way for positive aspects in wines, such as body and color stability in red wines, but they are also responsible for sensory characteristics that can be negative for their quality when found in excessive concentrations.

Changes in flavonol profile are a reliable indicator to assess the exposure of red grape berries to solar radiation and canopy architecture

Exposure to solar radiation affects berry composition through photomorphogenesis or changes in temperature. Flavonol synthesis is upregulated by UV‐B radiation

Managing soil health in vineyards: knowns and unknowns 

The use of soil conservation practices in wine grape production is becoming common throughout the world in response to an increased awareness of the value of soil health to maintain crop productivity and environmental quality. However, little information is available on the meaning of soil health within a viticultural context, and what soil properties should be targeted to achieve both the agronomic and environmental goals of wine grape producers. Conservation practices lead to increases in soil organic matter which may improve soil water retention, and increase soil C content therefore constituting a potential avenue to adapt to droughts and sequester C. Well-known management practices such as the use of cover crops, compost or no-till, although effective, seem to result in highly variable outcomes in soil organic matter and other soil health indicators. This variability is likely associated to the application of the practices in different soils and climates. Thus, integration of soil health building practices needs a thorough understanding of their efficacy under different conditions. Furthermore, additions of soil organic matter could trigger emissions of CO2 and N2O, a potent greenhouse gas that could represent a potential tradeoff of soil conservation practices. Finally, nutrient and water availability may be affected by the increase in soil organic matter having consequences for vine balance and grape quality.

Effect of environmentally friendly vineyard protection strategies on yeast ecology during fermentation

AIM: Currently, an increasing concern from governments and consumers about environmental sustainability of wine production provides new challenges for innovation in wine industry. Accordingly, the application of more-environmentally friendly vineyard treatments against fungal diseases (powdery and downy mildew) could have a cascading impact on yeast ecology of wine production.