Macrowine 2021
IVES 9 IVES Conference Series 9 Impact of the pre-fermentative addition of enological adjuvants on the development of UTA in wines

Impact of the pre-fermentative addition of enological adjuvants on the development of UTA in wines

Abstract

AIM: During alcoholic fermentation and wine aging, indole-3-acetic acid (IAA) can degrade into 2-aminoacetophenone (AAP). The presence of reasonable amount of AAP in wines is regarded as the main cause of untypical ageing defect (UTA) described by aroma descriptors such as “acacia blossom”, “furniture polish”, “wet wool”, “mothball”, or “fusel alcohol” [1, 2]. This study aims to evaluate the effectiveness of different oenological adjuvants (ascorbic acid, glutathione, ellagic tannin, gallotannin and grape tannin) added to must in pre-fermentation for preventing the possible development of UTA. In addition, a high-resolution suspect-screening approach was performed to evaluate the kinetics of formation and consumption of metabolites formed during the oxidative degradation of IAA into AAP.

METHODS: Johannitter, Pinot Blank, Pinot Gris and Riesling musts were separately added with each of the 5 adjuvants (GrT, EgT, GaT, ASC and GSH), fermented and finally added of sulfur dioxide. The free and conjugated IAA forms were qualified or quantified in wine at the end of the fermentation and the AAP was finally quantified after a period of forced ageing (6 days at 40 °C). Quantification was performed using a HPLC coupled with a high-resolution mass spectrometer (UHPLC-HQOMS) using a biphenyl column (3×150 mm, 2.7 µm) with formic acid 2% and acetonitrile as eluents [3]. The quantification limits ranged from 0.25 to 2 μg/L, excepted for AAP that had a quantification limit of 0.02 μg/L. For qualitative analyses, homemade standards of indole-acetic acid-2-sulfonate (IAA-SO3H) and of metabolites produced by oxidative chemical reaction of IAA to AAP (radical cation, FAP, FAPOP and Ox-IAA) were prepared. The IAA-hexoside RT was studied with a full mass/all ion fragmentation/NL data dependent-MS2 (Full MS/AIF/NL dd-MS2) experiment in positive ion mode [4].

RESULTS: Ascorbic acid has been confirmed as the most appropriate antioxidant adjuvant which can be used for UTA defect prevention. With an almost comparable effect, gallotannin also did not show AAP productions greater than 1 µg/L. Over 80% of the variability of potential AAP formation in wines was explained by an ANCOVA model, which was used to predict the possible AAP production considering the varieties, treatments and IAA content in young wine as known variables. 

CONCLUSIONS

Thanks to high resolution mass spectrometry, we were able to qualify and quantify different precursors and metabolites that take part in the development of UTA, allowing a better understanding of the mechanisms of AAP formation and the adjuvants actions involved in the wine protection.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Tiziana Nardin

Technology Transfer Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy,Tomas Roman, Susanne Dekker, Roberto Larcher  Technology Transfer Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy

Contact the author

Keywords

uta, AAP, HRMS

Citation

Related articles…

How much does the soil, climate and viticultural practices contribute to the variability of the terroir expression?

When considering the application of a systemic approach to assess the intrinsic complexity of agricultural production, the following question immediately arises

Recovery and purification of proteins from grape seed byproducts using proteomic and separative techniques

Grape seeds account for around 5% of the weight of the whole grape berry, representing approximately 40%-50% of the solid by-products that the different wine industries generate during the winemaking process.

Physicochemical parameters of juices made from different grape varieties in the 2019 and 2020 Harvests of Rio Grande do Sul

This study evaluated the physicochemical parameters of grape juices produced in the serra gaúcha from the 2019 and 2020 harvests. To do this, 43 juice samples were analyzed, and divided into four distinct categories: juices made exclusively from bordô grapes (sb), juices made from bordô and niágara grapes (sbn), juices combining bordô and isabel grapes, and juices made from cuts of several grape varieties.

An excessive leaf-fruit ratio reduces the yeast assimilable nitrogen in the must

Yeast assimilable nitrogen (YAN) in the grape must is a key variable for wine quality as a source of aroma precursors. In a situation of YAN deficiency, a foliar urea application upon the vine at veraison enhances YAN concentration and facilitates must fermentation. In 2013, Agroscope investigated the impact of leaf-fruit ratio on the nitrogen (N) assimilation and partitioning in grapevine Vitis vinifera cv. Chasselas following foliar-urea application with the aim of improving its efficiency on the YAN concentration.

Berry carbon (δ13C) and nitrogen (δ15N) isotopic ratio reflects within farm terroir diffferences

ÂThe natural abundance of carbon stable isotopes has been reported to be related to water availability in grapevines quite widely. In the case of nitrogen, the natural abundance of its stable isotopes is mainly affected by the nature of the source of nitrogen (organic vs. inorganic) used by the plant, though the bibliography available for grapevine is very scarce.