Macrowine 2021
IVES 9 IVES Conference Series 9 Impact of the pre-fermentative addition of enological adjuvants on the development of UTA in wines

Impact of the pre-fermentative addition of enological adjuvants on the development of UTA in wines

Abstract

AIM: During alcoholic fermentation and wine aging, indole-3-acetic acid (IAA) can degrade into 2-aminoacetophenone (AAP). The presence of reasonable amount of AAP in wines is regarded as the main cause of untypical ageing defect (UTA) described by aroma descriptors such as “acacia blossom”, “furniture polish”, “wet wool”, “mothball”, or “fusel alcohol” [1, 2]. This study aims to evaluate the effectiveness of different oenological adjuvants (ascorbic acid, glutathione, ellagic tannin, gallotannin and grape tannin) added to must in pre-fermentation for preventing the possible development of UTA. In addition, a high-resolution suspect-screening approach was performed to evaluate the kinetics of formation and consumption of metabolites formed during the oxidative degradation of IAA into AAP.

METHODS: Johannitter, Pinot Blank, Pinot Gris and Riesling musts were separately added with each of the 5 adjuvants (GrT, EgT, GaT, ASC and GSH), fermented and finally added of sulfur dioxide. The free and conjugated IAA forms were qualified or quantified in wine at the end of the fermentation and the AAP was finally quantified after a period of forced ageing (6 days at 40 °C). Quantification was performed using a HPLC coupled with a high-resolution mass spectrometer (UHPLC-HQOMS) using a biphenyl column (3×150 mm, 2.7 µm) with formic acid 2% and acetonitrile as eluents [3]. The quantification limits ranged from 0.25 to 2 μg/L, excepted for AAP that had a quantification limit of 0.02 μg/L. For qualitative analyses, homemade standards of indole-acetic acid-2-sulfonate (IAA-SO3H) and of metabolites produced by oxidative chemical reaction of IAA to AAP (radical cation, FAP, FAPOP and Ox-IAA) were prepared. The IAA-hexoside RT was studied with a full mass/all ion fragmentation/NL data dependent-MS2 (Full MS/AIF/NL dd-MS2) experiment in positive ion mode [4].

RESULTS: Ascorbic acid has been confirmed as the most appropriate antioxidant adjuvant which can be used for UTA defect prevention. With an almost comparable effect, gallotannin also did not show AAP productions greater than 1 µg/L. Over 80% of the variability of potential AAP formation in wines was explained by an ANCOVA model, which was used to predict the possible AAP production considering the varieties, treatments and IAA content in young wine as known variables. 

CONCLUSIONS

Thanks to high resolution mass spectrometry, we were able to qualify and quantify different precursors and metabolites that take part in the development of UTA, allowing a better understanding of the mechanisms of AAP formation and the adjuvants actions involved in the wine protection.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Tiziana Nardin

Technology Transfer Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy,Tomas Roman, Susanne Dekker, Roberto Larcher  Technology Transfer Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy

Contact the author

Keywords

uta, AAP, HRMS

Citation

Related articles…

Impact of yeast strains on wine profiles of nine PIWIs: focus on volatile thiols

Disease resistant grapevine varieties (PIWI) are increasingly important for sustainable wine production, yet the impact of different yeasts on their wine profiles remains poorly studied. In this study, nine white interspecies varieties (i.e., caladris blanc, fleurtai, hibernal, johanniter, muscaris, sauvignon kretos, soreli, souvignier gris, and voltis) grown at the faculty of agriculture, university of Zagreb (Croatia) were vinified with three different saccharomyces cerevisiae yeasts (control strain, zymaflore x5, and zymaflore xarom).

Effetti del cambiamento climatico europeo sulle epoche di vendemmia in Abruzzo

I dati termo-pluviometrici del periodo 1971-2009 registrati da alcune stazioni della regione Abruzzo sono stati analizzati adottando alcuni semplici indici climatici e bioclimatici. E’ stato valutato il verificarsi di cambiamenti climatici così come le loro ripercussioni sulle date di inizio vendemmia.

Soil fertility and confered vigour by rootstocks

The adaptation of rootstock to scion variety and soil determines largely the control of the vegetative growth for grapevine. Many experiments were performed in the vineyard to classify the rootstocks according to their soil adaptation and to their effect on vine vigour. So far there are no data describing the course of appearance of rootstock effects after plantation. Moreover the underlying mechanisms of conferred vigour remain largely unknown.

Water deficit differentially impacts the performances and the accumulation of grape metabolites of new varieties tolerant to fungi

The use of resistant varieties is a long-term but promising solution to reduce chemical input in viticulture. Several important breeding programs in Europe and abroad are now releasing a range of new hybrids performing well regarding fungi susceptibility and producing good quality wines. Unfortunately, insufficient attention is paid by the breeders to the adaptation of these varieties to climatic changes, notably to the increased climatic demand and water deficit (WD). Thus, prior to the adoption of such varieties by the wine industry in Mediterranean regions, there is a need to consider their suitability to WD. This study aimed to characterize the different drought-strategies adopted by 6 new resistant varieties selected by INRAE in comparison to Syrah. To allow the assessment of long-term impacts of WD, field-grown vines were exposed to contrasted WD from 2018 to 2021 under a semi-arid Mediterranean climate. A gradient of WD was applied in the field and controlled through plant measurements at the single plant level. Grape development was non-destructively monitored to determine the arrest of berry phloem unloading. The impacts of WD on berry composition, including water, primary metabolites (sugars, organic acids), secondary metabolites (anthocyanins, thiols precursors) and main cations contents, were assessed at this specific stage. Results showed different varietal responses during the year and inter-annual acclimation in terms of plant water use efficiency, biomass accumulation, as well as yield components and berry composition. WD differentially reduced the accumulation of primary metabolites at plant and berry levels, but it little changed their concentrations in the fruits at the ripe stage. Moreover, WD differentially impacted the accumulation of secondary metabolites and major cations between the varieties. In the talk, we’ll present the main results regarding the WD impacts on fruit metabolites and enlarge the reflection about the practical assessment of the grapevine acclimation to WD.

Aroma diversity of Amarone commercial wines

Amarone is an Italian red wine produced in the Valpolicella area, in north-eastern Italy. Due to its elaboration with withered grapes