Macrowine 2021
IVES 9 IVES Conference Series 9 Long-term sensorial and compositional effects of copper fining on the wine containing ‘reductive’ and ‘tropical’ volatile sulfur compounds

Long-term sensorial and compositional effects of copper fining on the wine containing ‘reductive’ and ‘tropical’ volatile sulfur compounds

Abstract

The aim of this study was to investigate long-term sensorial and compositional effects of copper addition to the white wine naturally high in varietal thiol levels, with added volatile sulfur compounds [hydrogen sulfide (H2S) and methanethiol (MeSH)]. The novelty of this study lies in the inclusion of sensory analysis at each time point by using Check-All-That-Apply and Descriptive Analysis methods to evaluate the sensory interaction between ‘reductive’ thiols and tropical thiols after copper fining. The Chenin Blanc wine was used as control (base) wine to which combinations of 40 µg/L H2S and 20 µg/L of MeSH were added, followed by an addition of 0,3 mg/L of copper to selected samples. The wine samples were stored for 24 hours, 6 weeks and 1 year. At each time point chemical analysis of varietal thiols, volatile sulfur compounds and copper levels were performed. The chemical results after 1 year of wine storage, showed a significant increase in the levels of varietal thiol 3-sulfanylhexanol (3-SH) and a decrease of 3-sulfanylhexyl acetate (3-SHA) concentration levels. However, a significant loss of 3-SH occurred in all the copper treated wines after 1 year of storage. On the other hand, the decrease of 3-SHA levels over time was less influenced by copper treatment, but rather due to acid hydrolyses and a subsequent increase in 3-SH (Makhotkina & Kilmartin, 2012). The presence of copper seem to further increase levels of bound- H2S in wine samples, which after 1 year of storage amounted to more than 25 µg/L. Chemical analysis of MeSH showed the significant increase in free and bound MeSH after 1 year of storage in wine samples spiked with MeSH. However, the addition of copper to the MeSH-spiked samples resulted in significant decrease of free and bound MeSH. The most significant sensory impact of the addition of H2S and MeSH to control wine was the suppression effect on “fruitiness” of wine after 24 hours which after 6-weeks and 1-year wine storage period decreased, potentially due to wine matrix absorption of H2S and MeSH (Nikolantonaki & Waterhouse, 2012). Sensory results after 1 year of wine storage showed that “guava”, a “tropical” attribute, was not suppressed with the addition of H2S and MeSH and low doses of “reductive” aromas deriving from H2S and MeSH in wine might even contributed to its sensory perception. Copper additions mainly decreased the perception of “guava” after 1 year. In contrast, the “passionfruit”, also a “tropical” attribute, was slightly suppressed when H2S and MeSH were present. The perception of the ester-derived attributes namely “peach” and “banana” increased in the samples containing copper after 1 year of storage, suggesting that a decrease of the 3-SH varietal thiol due to copper addition may enhance the perception of ester-derived aromas in wine.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Matija Lesković

*South African Grape and Wine Research Institute/Department Viticulture and Oenology, University of Stellenbosch, Private Bag X1, Matieland (Stellenbosch) 7602, South Africa,Marlize BEKKER † Jeanne BRAND * Allie KULCSAR † Wessel DU TOIT * *South African Grape and Wine Research Institute/Department Viticulture and Oenology, University of Stellenbosch, Private Bag X1, Matieland (Stellenbosch) 7602, South Africa † The Australian Wine Research Institute, P.O. Box 197, Glen Osmond, South Australia, 5064.

Contact the author

Keywords

varietal thiols, volatile sulfur compounds, wine copper fining, ‘reductive’ and ‘tropical’ volatile sulfur compounds, copper fining and wine storage, wine sensory analysis

Citation

Related articles…

HOW TO EVALUATE THE QUALITY OF NATURAL WINES?

The movement of Natural wines has clearly increased in the last few years, to reach a high demand from consumers nowadays. Switzerland has not been left out of this movement and has created a dedicated association in 2021. This association has the ambition to develop a specific tasting sheet for natural wines. The study of the tasting notes shows that the olfactory description of wines is recent but predominant today. But wine is a product makes to be drunk and not (just) to smell it. Based on these findings, a new 100-point tasting sheet has been developed. The main characteristics are 1) an evaluation in the mouth before the description of the olfaction, 2) to give 50% of the points on the judgment for the mouth characteristics, 3) to pejorate the visual aspects only if the wine is judged as “not drinkable” and 4) to express personal emotions.

New understanding on sulfites reactivity in wine

Sulfur dioxide is widely used during winemaking as an antioxidant and antimicrobial agent. Bisulfite (HSO3−), the predominant form of SO2 at wine pH, reacts with several wine components forming sulfonated adducts.

Emerging pest pressures in viticulture: a brief review of Argyrotaenia Ljungiana in Eastern Europe

As viticulture faces increasing threats from emerging pests, understanding and dealing with new infestations is crucial.

Impact of aging on dimethyl sulfide (DMS) in Corvina and Corvinone wines

Amarone is an Italian red wine produced in the Valpolicella area, in north-eastern Italy. Due to its elaboration with withered grapes, Amarone is a rather unique example of dry red wine. However, there is very limited data so far concerning the volatile composition of commercial Amarone wines, which also undergo a cask aging of 2-4 years before release. The present work aims at characterizing the aroma composition of Amarone and to elucidate the relationships between chemical composition and sensory characters.

Electrochemical diversity of italian white wines

Analysis of phenolic compounds typically involve spectrophotometric methods as well as liquid chromatography combined with DAD, fluorimetric, or MS detection. However, the complexity of wine phenolic composition generated, in recent years, attention towards other analytical approaches, including those allowing rapid and inexpensive operations. Voltametric AIM Oxidation of white wine phenolics occurs at different stages during winemaking and storage and can have important implications for wine sensory quality. Phenolic compounds, in particular those with a ortho-diphenol moiety, are main target of oxidation in wine. Strategies for the methods are particularly suited for the analysis of oxidizable compounds such as phenolics. The redox-active species can be oxidized and reduced at the electrode, therefore, applications of electrochemistry have been developed both to quantify such species, and to probe wine maturation processes.3 The project on the diversity of Italian wines aims at collecting and analysing large-scale compositional dataset related to Italian white wines.