Macrowine 2021
IVES 9 IVES Conference Series 9 Long-term sensorial and compositional effects of copper fining on the wine containing ‘reductive’ and ‘tropical’ volatile sulfur compounds

Long-term sensorial and compositional effects of copper fining on the wine containing ‘reductive’ and ‘tropical’ volatile sulfur compounds

Abstract

The aim of this study was to investigate long-term sensorial and compositional effects of copper addition to the white wine naturally high in varietal thiol levels, with added volatile sulfur compounds [hydrogen sulfide (H2S) and methanethiol (MeSH)]. The novelty of this study lies in the inclusion of sensory analysis at each time point by using Check-All-That-Apply and Descriptive Analysis methods to evaluate the sensory interaction between ‘reductive’ thiols and tropical thiols after copper fining. The Chenin Blanc wine was used as control (base) wine to which combinations of 40 µg/L H2S and 20 µg/L of MeSH were added, followed by an addition of 0,3 mg/L of copper to selected samples. The wine samples were stored for 24 hours, 6 weeks and 1 year. At each time point chemical analysis of varietal thiols, volatile sulfur compounds and copper levels were performed. The chemical results after 1 year of wine storage, showed a significant increase in the levels of varietal thiol 3-sulfanylhexanol (3-SH) and a decrease of 3-sulfanylhexyl acetate (3-SHA) concentration levels. However, a significant loss of 3-SH occurred in all the copper treated wines after 1 year of storage. On the other hand, the decrease of 3-SHA levels over time was less influenced by copper treatment, but rather due to acid hydrolyses and a subsequent increase in 3-SH (Makhotkina & Kilmartin, 2012). The presence of copper seem to further increase levels of bound- H2S in wine samples, which after 1 year of storage amounted to more than 25 µg/L. Chemical analysis of MeSH showed the significant increase in free and bound MeSH after 1 year of storage in wine samples spiked with MeSH. However, the addition of copper to the MeSH-spiked samples resulted in significant decrease of free and bound MeSH. The most significant sensory impact of the addition of H2S and MeSH to control wine was the suppression effect on “fruitiness” of wine after 24 hours which after 6-weeks and 1-year wine storage period decreased, potentially due to wine matrix absorption of H2S and MeSH (Nikolantonaki & Waterhouse, 2012). Sensory results after 1 year of wine storage showed that “guava”, a “tropical” attribute, was not suppressed with the addition of H2S and MeSH and low doses of “reductive” aromas deriving from H2S and MeSH in wine might even contributed to its sensory perception. Copper additions mainly decreased the perception of “guava” after 1 year. In contrast, the “passionfruit”, also a “tropical” attribute, was slightly suppressed when H2S and MeSH were present. The perception of the ester-derived attributes namely “peach” and “banana” increased in the samples containing copper after 1 year of storage, suggesting that a decrease of the 3-SH varietal thiol due to copper addition may enhance the perception of ester-derived aromas in wine.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Matija Lesković

*South African Grape and Wine Research Institute/Department Viticulture and Oenology, University of Stellenbosch, Private Bag X1, Matieland (Stellenbosch) 7602, South Africa,Marlize BEKKER † Jeanne BRAND * Allie KULCSAR † Wessel DU TOIT * *South African Grape and Wine Research Institute/Department Viticulture and Oenology, University of Stellenbosch, Private Bag X1, Matieland (Stellenbosch) 7602, South Africa † The Australian Wine Research Institute, P.O. Box 197, Glen Osmond, South Australia, 5064.

Contact the author

Keywords

varietal thiols, volatile sulfur compounds, wine copper fining, ‘reductive’ and ‘tropical’ volatile sulfur compounds, copper fining and wine storage, wine sensory analysis

Citation

Related articles…

Vitiforestry as innovative heritage. Adaptive conservation of historical wine-growing landscapes as response to XXI century’s challenges.

Traditional agricultural and agro-pastoral systems (prior to industrial revolution) often have the characteristic of being multiple systems, in which multiple crops are hosted simultaneously on the same plot. currently research suggests to study more in depth the potential of multiple agricultural systems in order to detect those characteristics of multiple agrarian systems that could allow modern viticulture to adapt to the challenges posed by climate change: rising temperatures with impacts on the phenological cycle of the vine, resurgence of plant deseases, extreme soil washout phenomena and hail storms, among others.

Modelling grape and wine quality through PLS Spline statistical method

Started in 1994, this project intends to explain quality of grapes and wines using data of soil, climate and vineyard that are currently used in field trials.

Gestión de la mitigación por las empresas vitivinícolas: combinar sostenibilidad y rentabilidad

The transition to a decarbonized economy requires companies to adopt mitigation measures. The wine sector is one of the most affected by climate change and, therefore, interested in its mitigation. The question is how this process develops. To address this, we build on a previous study [1], which identified different types of Spanish wineries based on their sustainability approach.

Intravarietal diversity: an opportunity for climate change adaptation

Merlot grapevine is the second wine cultivar most planted in the world and especially in the Bordeaux wine region. This cultivar has many advantages in producing high quality wine; however, in the last decade, climate change has increased the sugar concentration in berries at harvest and shortened the maturation cycle. If this has been up to now a great opportunity to improve wine quality profile, we are touching the tipping point. High sugar concentration at harvest induces high alcool content in wine which can negatively impact wine quality. There are many viticultural and oenological practices possible to limit this effect. In this study we focus on plant material through intra-varietal diversity of Merlot cultivar.

First characterization of Torrontés Riojano in la Rioja, Argentina: impact of pruning intensity on vine vigor and grape production 

Pruning is one essential vineyard management activity whose main purpose is to regulate plant growth and vigour, modulating berry size, and consequently, wine quality. In Chilecito, La Rioja Province, Argentina, Torrontés Riojano stands as the only autochthonous variety for winemaking, yielding golden and aromatic berries and distinctive muscatel-tasting wines. This white cultivar, resulting from the natural cross between Moscatel de Alejandría x Criolla Chica, is traditionally trained in “parral” (horizontal trellis system), aimed to manage vigorous canopies. This project constitutes the first study on the influence of pruning intensity on Torrontés Riojano growth habit and berry quality.