Macrowine 2021
IVES 9 IVES Conference Series 9 Long-term sensorial and compositional effects of copper fining on the wine containing ‘reductive’ and ‘tropical’ volatile sulfur compounds

Long-term sensorial and compositional effects of copper fining on the wine containing ‘reductive’ and ‘tropical’ volatile sulfur compounds

Abstract

The aim of this study was to investigate long-term sensorial and compositional effects of copper addition to the white wine naturally high in varietal thiol levels, with added volatile sulfur compounds [hydrogen sulfide (H2S) and methanethiol (MeSH)]. The novelty of this study lies in the inclusion of sensory analysis at each time point by using Check-All-That-Apply and Descriptive Analysis methods to evaluate the sensory interaction between ‘reductive’ thiols and tropical thiols after copper fining. The Chenin Blanc wine was used as control (base) wine to which combinations of 40 µg/L H2S and 20 µg/L of MeSH were added, followed by an addition of 0,3 mg/L of copper to selected samples. The wine samples were stored for 24 hours, 6 weeks and 1 year. At each time point chemical analysis of varietal thiols, volatile sulfur compounds and copper levels were performed. The chemical results after 1 year of wine storage, showed a significant increase in the levels of varietal thiol 3-sulfanylhexanol (3-SH) and a decrease of 3-sulfanylhexyl acetate (3-SHA) concentration levels. However, a significant loss of 3-SH occurred in all the copper treated wines after 1 year of storage. On the other hand, the decrease of 3-SHA levels over time was less influenced by copper treatment, but rather due to acid hydrolyses and a subsequent increase in 3-SH (Makhotkina & Kilmartin, 2012). The presence of copper seem to further increase levels of bound- H2S in wine samples, which after 1 year of storage amounted to more than 25 µg/L. Chemical analysis of MeSH showed the significant increase in free and bound MeSH after 1 year of storage in wine samples spiked with MeSH. However, the addition of copper to the MeSH-spiked samples resulted in significant decrease of free and bound MeSH. The most significant sensory impact of the addition of H2S and MeSH to control wine was the suppression effect on “fruitiness” of wine after 24 hours which after 6-weeks and 1-year wine storage period decreased, potentially due to wine matrix absorption of H2S and MeSH (Nikolantonaki & Waterhouse, 2012). Sensory results after 1 year of wine storage showed that “guava”, a “tropical” attribute, was not suppressed with the addition of H2S and MeSH and low doses of “reductive” aromas deriving from H2S and MeSH in wine might even contributed to its sensory perception. Copper additions mainly decreased the perception of “guava” after 1 year. In contrast, the “passionfruit”, also a “tropical” attribute, was slightly suppressed when H2S and MeSH were present. The perception of the ester-derived attributes namely “peach” and “banana” increased in the samples containing copper after 1 year of storage, suggesting that a decrease of the 3-SH varietal thiol due to copper addition may enhance the perception of ester-derived aromas in wine.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Matija Lesković

*South African Grape and Wine Research Institute/Department Viticulture and Oenology, University of Stellenbosch, Private Bag X1, Matieland (Stellenbosch) 7602, South Africa,Marlize BEKKER † Jeanne BRAND * Allie KULCSAR † Wessel DU TOIT * *South African Grape and Wine Research Institute/Department Viticulture and Oenology, University of Stellenbosch, Private Bag X1, Matieland (Stellenbosch) 7602, South Africa † The Australian Wine Research Institute, P.O. Box 197, Glen Osmond, South Australia, 5064.

Contact the author

Keywords

varietal thiols, volatile sulfur compounds, wine copper fining, ‘reductive’ and ‘tropical’ volatile sulfur compounds, copper fining and wine storage, wine sensory analysis

Citation

Related articles…

Ageing of sweet wines: oxygen evolution according to bung and barrel type

Barrel ageing is a crucial step in the wine process because it allows many changes to the wine as enrichment, colour stabilization, clarification and also a slow oxygenation. Effects of the oak barrel have to be known to prevent oxidation of the wine. The type of bung used during ageing is also a parameter to consider. Ageing sweet wines in barrel is a real challenge. These wines may need some oxygen at the beginning of ageing but they should be protected at the end of their maturation, to avoid oxidation.

Identification of aroma markers in amarone wines

Amarone is an Italian red wine produced in the Valpolicella area, in north-eastern Italy. Due to its elaboration with withered grapes, Amarone is a rather unique example of dry red wine. However, there is very limited data so far concerning the volatile composition of commercial Amarone wines, which also undergo a cask aging of 2-4 years before release. The present work aims at characterizing the aroma composition of Amarone and to elucidate the relationships between chemical composition and sensory characters. The analysis of 17 Amarone commercial wines from the same vintage (2015) was carried out by means of Gas Chromatography-Mass Spectrometry (GC-MS) and extracted by Solid Phase Extraction (SPE) and Solid Phase Micro Extraction (SPME). In addition, the sampled wines were subjected to a sensory evaluation in the form of sorting task.RESULTS: 70 volatile compounds were successfully identified and quantified, 30 of which were present in concentrations above their odor thresholds in all the samples. Using the odor activity value (OAV), the compounds that potentially contribute to Amarone perceived aroma are b-damascenone, ethyl and isoamyl acetate, ethyl esters (hexanoate, octanoate, butanoate, 3-methybutanoate), 4-ethyl guaiacol, 3-methylbutanoic acid, dimethyl sulfide (DMS), eugenol, massoia lactone, 1,4-cineol, TDN, cis/trans-whisky lactone. In certain samples, high OAVs were also observed for 4-ethyl phenol and 1,8-cineole.Results from the sorting task sensory analysis showed three clusters formed.

Deciphering the function and regulation of VviEPFL9 paralogs to modulate stomatal density in grapevine through New Genomic Techniques

Stomata are microscopic pores mainly located in leaf epidermis, allowing gas exchanges between plants and atmosphere. Stomatal initiation relies on the transcription factor SPEECHLESS which is mainly regulated by the MAP kinase cascade, in turn controlled by small signaling peptides, the Epidermal Patterning Factors (EPF and EPF-Like), namely EPF1, EPF2 and EPFL9. While EPF1 and EPF2 induce the inhibition of SPEECHLESS, their antagonist, EPFL9, stabilizes it, leading to stomatal formation. In grapevine, there are two paralogs for EPFL9, VviEPFL9-1 and VviEPFL9-2. Despite their structural similarity, it remains unclear whether they are differentially regulated and have distinct roles.

Sensory and chemical profiles of Cabernet Sauvignon wines exposed to different irrigation regimes during heatwaves

Heatwaves, defined as three or more consecutive days above average historical maximum temperatures, are having a significant impact on agricultural crop yields and quality, especially in arid or semi-arid regions with reduced water availability during the growing season.

THE EFFECT OF PRE-FERMENTATIVE GLYPHOSATE ADDITION ON THE METABOLITE PROFILE OF WINE

The synthetic herbicide glyphosate has been used extensively in viticulture over many decades to combat weeds. Despite this, the possible influence of residual glyphosate on both the alcoholic fermentation of grape juice and the subsequent metabolite profile of wines has not been investigated. In this study, Pinot noir juice supplemented with different concentrations of glyphosate (0 µg L-1, 10 µg L-1 and 1000 µg L-1) was fermented with commercial Saccharomyces cerevisiae yeast strains. Using a combination of analytical methods, 80 metabolites were quantified in the resulting wines.