Macrowine 2021
IVES 9 IVES Conference Series 9 Long-term sensorial and compositional effects of copper fining on the wine containing ‘reductive’ and ‘tropical’ volatile sulfur compounds

Long-term sensorial and compositional effects of copper fining on the wine containing ‘reductive’ and ‘tropical’ volatile sulfur compounds

Abstract

The aim of this study was to investigate long-term sensorial and compositional effects of copper addition to the white wine naturally high in varietal thiol levels, with added volatile sulfur compounds [hydrogen sulfide (H2S) and methanethiol (MeSH)]. The novelty of this study lies in the inclusion of sensory analysis at each time point by using Check-All-That-Apply and Descriptive Analysis methods to evaluate the sensory interaction between ‘reductive’ thiols and tropical thiols after copper fining. The Chenin Blanc wine was used as control (base) wine to which combinations of 40 µg/L H2S and 20 µg/L of MeSH were added, followed by an addition of 0,3 mg/L of copper to selected samples. The wine samples were stored for 24 hours, 6 weeks and 1 year. At each time point chemical analysis of varietal thiols, volatile sulfur compounds and copper levels were performed. The chemical results after 1 year of wine storage, showed a significant increase in the levels of varietal thiol 3-sulfanylhexanol (3-SH) and a decrease of 3-sulfanylhexyl acetate (3-SHA) concentration levels. However, a significant loss of 3-SH occurred in all the copper treated wines after 1 year of storage. On the other hand, the decrease of 3-SHA levels over time was less influenced by copper treatment, but rather due to acid hydrolyses and a subsequent increase in 3-SH (Makhotkina & Kilmartin, 2012). The presence of copper seem to further increase levels of bound- H2S in wine samples, which after 1 year of storage amounted to more than 25 µg/L. Chemical analysis of MeSH showed the significant increase in free and bound MeSH after 1 year of storage in wine samples spiked with MeSH. However, the addition of copper to the MeSH-spiked samples resulted in significant decrease of free and bound MeSH. The most significant sensory impact of the addition of H2S and MeSH to control wine was the suppression effect on “fruitiness” of wine after 24 hours which after 6-weeks and 1-year wine storage period decreased, potentially due to wine matrix absorption of H2S and MeSH (Nikolantonaki & Waterhouse, 2012). Sensory results after 1 year of wine storage showed that “guava”, a “tropical” attribute, was not suppressed with the addition of H2S and MeSH and low doses of “reductive” aromas deriving from H2S and MeSH in wine might even contributed to its sensory perception. Copper additions mainly decreased the perception of “guava” after 1 year. In contrast, the “passionfruit”, also a “tropical” attribute, was slightly suppressed when H2S and MeSH were present. The perception of the ester-derived attributes namely “peach” and “banana” increased in the samples containing copper after 1 year of storage, suggesting that a decrease of the 3-SH varietal thiol due to copper addition may enhance the perception of ester-derived aromas in wine.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Matija Lesković

*South African Grape and Wine Research Institute/Department Viticulture and Oenology, University of Stellenbosch, Private Bag X1, Matieland (Stellenbosch) 7602, South Africa,Marlize BEKKER † Jeanne BRAND * Allie KULCSAR † Wessel DU TOIT * *South African Grape and Wine Research Institute/Department Viticulture and Oenology, University of Stellenbosch, Private Bag X1, Matieland (Stellenbosch) 7602, South Africa † The Australian Wine Research Institute, P.O. Box 197, Glen Osmond, South Australia, 5064.

Contact the author

Keywords

varietal thiols, volatile sulfur compounds, wine copper fining, ‘reductive’ and ‘tropical’ volatile sulfur compounds, copper fining and wine storage, wine sensory analysis

Citation

Related articles…

Typicité et terroir : importance relative du type de sol et du niveau de maturité dans la typologie sensorielle du vin

Le lien fonctionnel entre typicité et terroir a été étudié en prenant en compte deux dimensions importantes : le type de sol et la date de vendanges. Ces deux facteurs sont, à des degrés divers

The influence of initial phenolic content on the outcome of pinot noir wine microoxygenation

Over the years, microoxygenation (MOX) has become a popular vinification technique to improve wine sensory qualities. However, among the impacting factors reported

Uvalino wine: chemical and sensory profile

The evaluation of different chemical compounds present in Uvalino wines was correlated with sensory analysis. The analysis showed a high content of polyphenolic compounds responsible for the organoleptic properties of wine, including color, astringency and bitterness.

Phenological characterization of a wide range of Vitis Vinifera varieties

In order to study the impact of climate change on Bordeaux grape varieties and to assess the adaptation capacities of candidates to the grape varieties of this wine region to the new climatic conditions, an experimental block design composed of 52 grape varieties was set up in 2009 at the INRAE Bordeaux Aquitaine center. Among the many parameters studied, the three main phenological stages of the vine (budburst, flowering and veraison) have been closely monitored since 2012. Observations for each year, stage and variety were carried out on four independent replicates. Precocity indices have been calculated from the data obtained over the 2012-2021 period (Barbeau et al. 1998). This work allowed to group the phenological behaviour of the grapevine varieties, not only based on the timing of the subsequent developmental stages, but also on the overall precocity of the cycle and the total length of the cycle between budburst and veraison. Results regarding the variability observed among the different grape varieties for these phenological stages are presented as heat maps.

Effect of kaolin foliar application on grape cultivar Assyrtiko (Vitis vinifera L.) under vineyard conditions

In the context of climate change and for the sustainable exploitation of Mediterranean vineyards, it is necessary to use new strategies to adapt to the new climatic conditions.