Macrowine 2021
IVES 9 IVES Conference Series 9 Long-term sensorial and compositional effects of copper fining on the wine containing ‘reductive’ and ‘tropical’ volatile sulfur compounds

Long-term sensorial and compositional effects of copper fining on the wine containing ‘reductive’ and ‘tropical’ volatile sulfur compounds

Abstract

The aim of this study was to investigate long-term sensorial and compositional effects of copper addition to the white wine naturally high in varietal thiol levels, with added volatile sulfur compounds [hydrogen sulfide (H2S) and methanethiol (MeSH)]. The novelty of this study lies in the inclusion of sensory analysis at each time point by using Check-All-That-Apply and Descriptive Analysis methods to evaluate the sensory interaction between ‘reductive’ thiols and tropical thiols after copper fining. The Chenin Blanc wine was used as control (base) wine to which combinations of 40 µg/L H2S and 20 µg/L of MeSH were added, followed by an addition of 0,3 mg/L of copper to selected samples. The wine samples were stored for 24 hours, 6 weeks and 1 year. At each time point chemical analysis of varietal thiols, volatile sulfur compounds and copper levels were performed. The chemical results after 1 year of wine storage, showed a significant increase in the levels of varietal thiol 3-sulfanylhexanol (3-SH) and a decrease of 3-sulfanylhexyl acetate (3-SHA) concentration levels. However, a significant loss of 3-SH occurred in all the copper treated wines after 1 year of storage. On the other hand, the decrease of 3-SHA levels over time was less influenced by copper treatment, but rather due to acid hydrolyses and a subsequent increase in 3-SH (Makhotkina & Kilmartin, 2012). The presence of copper seem to further increase levels of bound- H2S in wine samples, which after 1 year of storage amounted to more than 25 µg/L. Chemical analysis of MeSH showed the significant increase in free and bound MeSH after 1 year of storage in wine samples spiked with MeSH. However, the addition of copper to the MeSH-spiked samples resulted in significant decrease of free and bound MeSH. The most significant sensory impact of the addition of H2S and MeSH to control wine was the suppression effect on “fruitiness” of wine after 24 hours which after 6-weeks and 1-year wine storage period decreased, potentially due to wine matrix absorption of H2S and MeSH (Nikolantonaki & Waterhouse, 2012). Sensory results after 1 year of wine storage showed that “guava”, a “tropical” attribute, was not suppressed with the addition of H2S and MeSH and low doses of “reductive” aromas deriving from H2S and MeSH in wine might even contributed to its sensory perception. Copper additions mainly decreased the perception of “guava” after 1 year. In contrast, the “passionfruit”, also a “tropical” attribute, was slightly suppressed when H2S and MeSH were present. The perception of the ester-derived attributes namely “peach” and “banana” increased in the samples containing copper after 1 year of storage, suggesting that a decrease of the 3-SH varietal thiol due to copper addition may enhance the perception of ester-derived aromas in wine.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Matija Lesković

*South African Grape and Wine Research Institute/Department Viticulture and Oenology, University of Stellenbosch, Private Bag X1, Matieland (Stellenbosch) 7602, South Africa,Marlize BEKKER † Jeanne BRAND * Allie KULCSAR † Wessel DU TOIT * *South African Grape and Wine Research Institute/Department Viticulture and Oenology, University of Stellenbosch, Private Bag X1, Matieland (Stellenbosch) 7602, South Africa † The Australian Wine Research Institute, P.O. Box 197, Glen Osmond, South Australia, 5064.

Contact the author

Keywords

varietal thiols, volatile sulfur compounds, wine copper fining, ‘reductive’ and ‘tropical’ volatile sulfur compounds, copper fining and wine storage, wine sensory analysis

Citation

Related articles…

Mapping of canopy features in commercial vineyards using machine vision

Vineyard canopy features such canopy porosity and fruit exposure influenced microclimate, fungal disease incidence and grape composition. An objective, rapid and non-invasive method to assess and map the canopy status is needed to apply in precision viticulture. A new method for canopy status assessment and mapping based on non-invasive machine vision was applied in commercial vineyards in this work.

Assessment of the optimal number of observations in the study of vineyard soil (Rigosol)

A study of soil pH on the experimental field resulted in a high variability of pH on a very small scale. This kind of heterogenity in soil pH have effects on growth of two grapevine varieties on rootstock Kober 5BB

Identification of a stable epi-allele associated with flower development and low bunch compactness in a somatic variant of Tempranillo Tinto

Grapevine cultivars are vegetatively propagated to preserve their varietal characteristics. However, spontaneous somatic variations that occur and are maintained during cycles of vegetative growth offer opportunities for the natural improvement of traditional grape cultivars. One advantageous trait for winegrowing is reduced bunch compactness, which decreases the susceptibility to pests and fungal diseases and favor an even berry ripening.

Back to the roots: how an underutilised biotechnological tool can support research to improve grapevine resilience against biotic stressors in an unpredictable future

Hairy roots (HRs) are a symptom of a natural genetic modification by the soil-borne phytopathogen Rhizobium rhizogenes.

THE POTENTIAL USE OF SOLUBLE POLYSACCHARIDES TO PREVENT THE OXIDATION OF ROSÉ WINES

Lately, rosé wine is rapidly increasing its popularity worldwide. Short-time macerations with the red skin of the grapes cause the partial extraction of anthocyanins, which are responsible for the pinki-sh-salmon hue of rosé wines. However, the low quantity of tannins (antioxidants) and richness in phenolic acids, which can be easily oxidized into yellowish pigments, tend to predispose rosé wines to an undesirable browning. Although the use of SO₂ for the prevention of oxidation is highly extended, this practice is expected to be reduced. Therefore, the search for alternative oenological adjuvants that prevent the oxidation and browning of rosé wines is highly desired.