Macrowine 2021
IVES 9 IVES Conference Series 9 Use of new tools for red wine aging: active and passive microoxygenation with oak wood. Effect on volatile compounds and sensorial impact

Use of new tools for red wine aging: active and passive microoxygenation with oak wood. Effect on volatile compounds and sensorial impact

Abstract

AIM: The aim of this study was to evaluate the evolution of different chemical parameters and sensory impact on red wine during maturation in barrels or with new technologies: active and passive micro-oxygenation systems together with oak wood alternatives.

METHODS: Seven different aging systems [1] based in HDPE tanks with different OTR, tank using PMDS infusion tube, stoneware barrel, stainless steel tank together with MOX and barrel, were filled with Tinta de Toro variety wine. The trial lasted for six months and, in both the traditional barrel and the alternative stave systems, French oak wood with a similar average toast from the same cooperage and from the same batch was used. Along with the addition of oak wood in the MOX systems, the active MOX systems used a variable O2 dosage that reproduces the dynamic OTR profile of a barrel [2].

RESULTS: The active MOX system was performed with the addition of oak wood, reproducing the volume of wood in contact with wine from a barrel. Since the wine was sampled at different times (45, 90, 135 and 180 days), different statistical procedures have been performed to establish the differences between them throughout the study period and, in the end, to relate the analytical composition to the sensory analysis of the wine. 

CONCLUSIONS

Alternative aging systems, based on a passive MOX (HDPE, PDMS and StW) have proved to be suitable for wine aging, since the results obtained were similar than ones for wines from a classic active MOX, made in stainless steel tanks, and barrels. However, some differences were observed that allow their differentiation. Both, on a sensory and analytical level, barrel wines were the most different, being algo possible the differentiation of PDMS wines from H-HDPE and MOX and from Ö-HDPE, StW and L-HDPE. Of all the parameters analyzed, volatile composition was the one that most contributed to the differentiation, which could be mainly due to the way in which the wine accesses the compounds present in the wood, compared to the rest of the aging systems.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Ana Maria Martinez Gil

Dpt. Química Analítica, UVaMOX-Group, Universidad de Valladolid, Avda. Madrid, 50, 34004 Palencia, Spain,Rosario, SANCHEZ-GOMEZ Dpt. Química Analítica, UVaMOX-Group, Universidad de Valladolid, Avda. Madrid, 50, 34004 Palencia, Spain  Ignacio NEVARES, Dpt. Ingeniería Agrícola y Forestal, UVaMOX-Group, Universidad de Valladolid, Avda. Madrid, 50, 34004 Palencia, Spain Maria Del ALAMO-SANZA, Dpt. Química Analítica, UVaMOX-Group, Universidad de Valladolid, Avda. Madrid, 50, 34004 Palencia, Spain

Contact the author

Keywords

barrel, oxygen, passive and active micro-oxygenation, staves, red wine, volatile compounds

Citation

Related articles…

Analysis of volatile composition of interaction between the pathogen E. necator and two grapevine varieties

Volatile organic compounds (VOCs) are emitted by nearly all plant organs of the plants, including leaves. They play a key role in the communication with other organisms, therefore they are involved in plant defence against phytopathogens. In this study VOCs from grapevine leaves of two varieties of Vitis vinifera infected by Erysiphe necator were analysed. The varieties were selected based on their susceptibility to pathogen, Kishmish Vatkana has the Ren1 resistance gene and Zamarrica showed high susceptibility in previous trials.

The international Internet site of the geoviticulture MCC system

The “Geoviticulture Multicriteria Climatic Classification (MCC) System” was developed to characterize the climate of the wine producing regions of the world.

Towards a regional mapping of vine water status based on crowdsourcing observations

Monitoring vine water status is a major challenge for vineyard management because it influences both yield and harvest quality. It is also a challenge at the territorial scale for identifying periods of high water restriction or zones regularly impacted by water stress. This information is of major importance for defining collective strategies, anticipating harvest logistic or applying for irrigation authorisation. At this spatial scale, existing tools and methods for monitoring vine water status are few and often require strong assumptions (e.g. water balance model). This paper proposes to consider a collaborative collection of observations by winegrowers and wine industry stakeholders (crowdsourcing) as an interesting alternative. Indeed, it allows the collection of a large number of field observations while pooling the collection effort. However, the feasibility of such a project and its interest in monitoring vine water status at regional scale has never been tested.

The objective of this article is to explore the possibility of making a regional map of vine water status based on crowdsourcing observations. It is based on the study of the free mobile application ApeX-Vigne, which allows the collection of observations about vine shoot growth. This information is easy to collect and can be considered, under certain conditions, as a proxy for vine water status. This article presents the first results obtained from the nearly 18,000 observations collected by winegrowers and wine industry stakeholders during 2019, 2020 and 2021 seasons. It presents the vine shoot growth maps obtained at regional scale and their evolution over the three vintages studied. It also proposes an analysis of the factors that favoured the number of observations collected and those that favoured their quality. These results open up new perspectives for monitoring vine water status at a regional scale but above they provide references for other crowdsourcing projects in viticulture.

A new step toward the comprehensive valorisation of grape marc through subcritical water extraction of polysaccharides

Winemaking generates a significant amount of waste. Grape marc, the main solid residue, constitutes 20-25% of the pressed grapes and approximately 8-9 million tons are produced globally each year.

Understanding vine response to Mediterranean summer stress for the development of adaptation strategies – in the kaolin case

In this video recording of the IVES science meeting 2023, Sara Bernardo (CITAB, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal) speaks about understanding vine response to Mediterranean summer stress for the development of adaptation strategies – in the kaolin case. This presentation is based on an original article accessible for free on OENO One.