Macrowine 2021
IVES 9 IVES Conference Series 9 Use of new tools for red wine aging: active and passive microoxygenation with oak wood. Effect on volatile compounds and sensorial impact

Use of new tools for red wine aging: active and passive microoxygenation with oak wood. Effect on volatile compounds and sensorial impact

Abstract

AIM: The aim of this study was to evaluate the evolution of different chemical parameters and sensory impact on red wine during maturation in barrels or with new technologies: active and passive micro-oxygenation systems together with oak wood alternatives.

METHODS: Seven different aging systems [1] based in HDPE tanks with different OTR, tank using PMDS infusion tube, stoneware barrel, stainless steel tank together with MOX and barrel, were filled with Tinta de Toro variety wine. The trial lasted for six months and, in both the traditional barrel and the alternative stave systems, French oak wood with a similar average toast from the same cooperage and from the same batch was used. Along with the addition of oak wood in the MOX systems, the active MOX systems used a variable O2 dosage that reproduces the dynamic OTR profile of a barrel [2].

RESULTS: The active MOX system was performed with the addition of oak wood, reproducing the volume of wood in contact with wine from a barrel. Since the wine was sampled at different times (45, 90, 135 and 180 days), different statistical procedures have been performed to establish the differences between them throughout the study period and, in the end, to relate the analytical composition to the sensory analysis of the wine. 

CONCLUSIONS

Alternative aging systems, based on a passive MOX (HDPE, PDMS and StW) have proved to be suitable for wine aging, since the results obtained were similar than ones for wines from a classic active MOX, made in stainless steel tanks, and barrels. However, some differences were observed that allow their differentiation. Both, on a sensory and analytical level, barrel wines were the most different, being algo possible the differentiation of PDMS wines from H-HDPE and MOX and from Ö-HDPE, StW and L-HDPE. Of all the parameters analyzed, volatile composition was the one that most contributed to the differentiation, which could be mainly due to the way in which the wine accesses the compounds present in the wood, compared to the rest of the aging systems.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Ana Maria Martinez Gil

Dpt. Química Analítica, UVaMOX-Group, Universidad de Valladolid, Avda. Madrid, 50, 34004 Palencia, Spain,Rosario, SANCHEZ-GOMEZ Dpt. Química Analítica, UVaMOX-Group, Universidad de Valladolid, Avda. Madrid, 50, 34004 Palencia, Spain  Ignacio NEVARES, Dpt. Ingeniería Agrícola y Forestal, UVaMOX-Group, Universidad de Valladolid, Avda. Madrid, 50, 34004 Palencia, Spain Maria Del ALAMO-SANZA, Dpt. Química Analítica, UVaMOX-Group, Universidad de Valladolid, Avda. Madrid, 50, 34004 Palencia, Spain

Contact the author

Keywords

barrel, oxygen, passive and active micro-oxygenation, staves, red wine, volatile compounds

Citation

Related articles…

GC-O and olfactoscan approaches to reveal premature aging markers in Chardonnay wine

Molecular markers of wine oxydation, such as sotolon or Strecker’s aldehydes that induce respectively nut or curry and boiled vegetables or wilted rose odors, can be percieved as a default by consumers. These volatile compounds are especially formed during the premature aging of wine, but it is likely that several contributing compounds are still unknown as is their combined contribution. This study was carried out to identify the markers of oxydation in Chardonnay wine by Gas Chromatography Olfactometry (GC-O) and to study the impact of these markers on the complex wine aromatic buffer using the Olfactoscan approach.A Chardonnay wine (2018-vintage), taken after malolactic fermentation without sulphites addition, was submitted to an artificial oxidation to simulate more or less prononced premature oxidation. Volatile compounds were extracted by Solid-Phase Extraction (SPE) and analysed by GC-O with a panel of 13 trained subjects. The same extract was also submitted to a second analysis based on the Olfactoscan technique, which allowed to evaluate the impact of each volatile compounds on the complex aromatic buffer of a non-oxidized wine delivered as background odor. Preliminary results revealed three types of behavior. On the one hand, several odor zones appeared only with the background odour, suggesting a synergy effect induced by the compounds in the aromatic buffer. Conversely, odor-active compounds could not be perceived within the background odor suggesting a masking effect. Finally several compounds were found to contribute as key odorants for wine oxydation once mixed with the aromatic buffer. These compounds are still to be identified using complementary techniques.

Changing New Zealand climate equals a changing New Zealand terroir?

Changing New Zealand climate equals a changing New Zealand terroir

Wines empirical perception and growers management practices in the Anjou Villages Brissac vineyard (France)

The concept of viticultural terroir includes soil, sub-soil, and climatic factors but also many management viticultural and oenological practices which are chosen according to know-how of the winegrowers.

Agrovoltaic on vineyards: preliminary resuls on seasonal and diurnal whole-canopy gas exchange

Context and purpose of the study. Albeit standing as a fashionable research topic dual use of land as viti-voltaic still lacks of fundamental knowledge about whole canopy grapevine response to altered microclimate under panels vs open field conditions.

Influence of preflowering basal leaf removal on aromatic composition of cv. Tempranillo wine from semiarid climate (Extremadura Western Spain)

Abstract In this work the effects of early leaf removal performed manually at preflowering phenological stage, on the volatile composition of Tempranillo (Vitis vinifera L.) wines were studied. From 2009-2011 vintages 34 wine volatile compounds were identified and quantified by gas chromatography-mass spectrometry (GC-MS) where early leaf removal only modified 25 of them. The total C6 compounds, acetates and volatiles acids (with exception of isobutyric acid) were affected by defoliation, whereas alcohols and esters showed a minor effect. Furthermore the vintage effect also was shown.