Macrowine 2021
IVES 9 IVES Conference Series 9 Use of new tools for red wine aging: active and passive microoxygenation with oak wood. Effect on volatile compounds and sensorial impact

Use of new tools for red wine aging: active and passive microoxygenation with oak wood. Effect on volatile compounds and sensorial impact

Abstract

AIM: The aim of this study was to evaluate the evolution of different chemical parameters and sensory impact on red wine during maturation in barrels or with new technologies: active and passive micro-oxygenation systems together with oak wood alternatives.

METHODS: Seven different aging systems [1] based in HDPE tanks with different OTR, tank using PMDS infusion tube, stoneware barrel, stainless steel tank together with MOX and barrel, were filled with Tinta de Toro variety wine. The trial lasted for six months and, in both the traditional barrel and the alternative stave systems, French oak wood with a similar average toast from the same cooperage and from the same batch was used. Along with the addition of oak wood in the MOX systems, the active MOX systems used a variable O2 dosage that reproduces the dynamic OTR profile of a barrel [2].

RESULTS: The active MOX system was performed with the addition of oak wood, reproducing the volume of wood in contact with wine from a barrel. Since the wine was sampled at different times (45, 90, 135 and 180 days), different statistical procedures have been performed to establish the differences between them throughout the study period and, in the end, to relate the analytical composition to the sensory analysis of the wine. 

CONCLUSIONS

Alternative aging systems, based on a passive MOX (HDPE, PDMS and StW) have proved to be suitable for wine aging, since the results obtained were similar than ones for wines from a classic active MOX, made in stainless steel tanks, and barrels. However, some differences were observed that allow their differentiation. Both, on a sensory and analytical level, barrel wines were the most different, being algo possible the differentiation of PDMS wines from H-HDPE and MOX and from Ö-HDPE, StW and L-HDPE. Of all the parameters analyzed, volatile composition was the one that most contributed to the differentiation, which could be mainly due to the way in which the wine accesses the compounds present in the wood, compared to the rest of the aging systems.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Ana Maria Martinez Gil

Dpt. Química Analítica, UVaMOX-Group, Universidad de Valladolid, Avda. Madrid, 50, 34004 Palencia, Spain,Rosario, SANCHEZ-GOMEZ Dpt. Química Analítica, UVaMOX-Group, Universidad de Valladolid, Avda. Madrid, 50, 34004 Palencia, Spain  Ignacio NEVARES, Dpt. Ingeniería Agrícola y Forestal, UVaMOX-Group, Universidad de Valladolid, Avda. Madrid, 50, 34004 Palencia, Spain Maria Del ALAMO-SANZA, Dpt. Química Analítica, UVaMOX-Group, Universidad de Valladolid, Avda. Madrid, 50, 34004 Palencia, Spain

Contact the author

Keywords

barrel, oxygen, passive and active micro-oxygenation, staves, red wine, volatile compounds

Citation

Related articles…

DEVELOPMENT OF DISTILLATION SENSORS FOR SPIRIT BEVERAGES PRODUCTION MONITORING BASED ON IMPEDANCE SPECTROSCOPY MEASUREMENT AND PARTIAL LEAST SQUARES REGRESSION (PLS-R)

During spirit beverages production, the distillate is divided in three parts: the head, the heart, and the tail. Acetaldehyde and ethanol are two key markers which allow the correct separation of distillate. Being toxic, the elimination of the head part, which contains high concentration of acetaldehyde, is crucial to guarantee the consumer’s health and security. Plus, the tail should be separated from the heart based on ethanol concentration.

Mobilizing endogenous transposable elements for grapevine improvement: a genomic and epigenomic approach in New Zealand Sauvignon Blanc

Efforts to improve the New Zealand wine industry’s climate resilience and sustainability through grapevine improvement are limited by germplasm availability and a reliance on Sauvignon Blanc exports. To address this, we are working to generate a population of 12,000 individuals with unique genetic traits, from which to select future clones for major export varieties.

Sauvignon Blanc plantlets are being regenerated from embryogenic callus, using an approach designed to mobilise endogenous transposable elements as mutagens.

Simulating the impact of climate change on viticultural systems in various European vineyards

Aim: Global climate change affects regional climates and hold implications for wine growing regions worldwide (Jones, 2007, 2015; van Leeuwen and Darriet, 2016). The prospect of 21st century climate change consequently is one of the major challenges facing the wine industry (Keller, 2010).

Exploring aromatic profiles and environmental influences on berry chemistry of V. vinifera Riesling and Vitis sp. L’Acadie blanc in Quebec and Nova Scotia, Canada

Wine quality depends on grape biochemical constituents, including sugars, organic acids, amino acids, and bound and free aroma compounds, which are influenced by vineyard location and environmental factors such as temperature and precipitation [1].

Chemical and sensory quality, environmental sustainability, and consumer acceptance of South Tyrolean wines produced from hybrid grape varieties

Disease-resistant hybrid grape cultivars (DRHGCs) are hybrids of Vitis vinifera varieties with other Vitis species, and they are endowed with greater resistance to specific fungal diseases, enabling a potential reduction in the application of pesticides in the vineyard.