Macrowine 2021
IVES 9 IVES Conference Series 9 Application of uv-led in wine as an alternative to sulphur dioxide

Application of uv-led in wine as an alternative to sulphur dioxide

Abstract

Sulfites (SO2) are commonly used in the wine industry to preserve products during storage for antiseptic and antioxidant purposes (Oliveira et al., 2011). However, the presence of sulfites at varying concentrations has been linked to allergic reactions in some consumers, such as dermatitis, urticaria, abdominal pain, among others (Vally & Thompson, 2001). UV-LED irradiation has been is an attractive technology of non-thermal nature and is an alternative to partially or totally replace the addition of SO2 to wine, due to its antimicrobial effect (Conner et al., 1998; Falguera et al., 2013). In this study, the effect of the UV-LED irradiation on the activity of Acetobacter aceti ATCC 15973 of white wine (Sauvignon blanc) and red wine (Pinot noir) was evaluated. A laboratory scale static UV LED irradiation system was designed, composed of four diodes with wavelengths of 278 nm (8-12 mW), 275 nm (3-5 mW) and 265 nm (1-3 mW) and irradiation times of 10, 20 and 30 min. The results indicate that irradiation at a wavelength of 278 nm for 30 minutes completely eliminated the A. aceti concentration (CFU/ml) in white wine. Irradiation of white wine at wavelengths of 275 and 265 nm for 30 min resulted in a logarithmic reduction of approximately 2.4. UV-LED irradiation processing of red wine was not as efficacious in eliminating A. aceti (CFU/ml), however, a logarithmic reduction of 4 was evidenced over 30 min. Therefore, the results obtained from the static UV LED irradiation process for white wine (Sauvignon blanc) and red wine (Pinot noir) showed that with diodes at a wavelength of 278 nm and a time of 30 min, the concentration of A. aceti ATCC 15973 was significantly reduced, which is relevant to control to maintain the quality of the wines. Furthermore, this technology could be an advantageous alternative to avoid the excessive use of sulphites in wine products. The effect on the final quality aspects of wine needs to be further clarified.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Fernando Salazar

Laboratorio de Fermentaciones Industriales, Escuela de Alimentos, Facultad de Ciencias Agronómica y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Chile,Sebastián Pizarro, Laboratorio de Fermentaciones Industriales, Escuela de Alimentos, Facultad de Ciencias Agronómica y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Chile Mariela Labbé, Laboratorio de Fermentaciones Industriales, Escuela de Alimentos, Facultad de Ciencias Agronómica y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Chile Ismael Kasahara, Escuela de Alimentos, Facultad de Ciencias Agronómica y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Chile  Felipe Aguilar, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Chile Pablo Ulloa, Instituto de Investigaciones Agropecuarias, INIA La Platina, Santiago, Chile Liliana Godoy, Departamento de Fruticultura y Enología. Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Chile

Contact the author

Keywords

uv-led irradiation, acetobacter aceti (atcc 15973), sulphur dioxide, wines

Citation

Related articles…

Discriminant value of soil properties for terroir zoning

Environmental analysis (climate, vegetation, geomorfoloy-lanscape, lithology and soil) and its integration in a quality index taking the Appellation of Origin as the sole universe are used as general methodology for terroir zoning in Spain (Sotés and Gómez-Miguel, 1986-2005). This methodology is also applied to specific aspects of different Spanish Appellations of Origin (size, distribution and landscape peculiarities and vine occupation index).

REGULATION OF CENTRAL METABOLISM IN THE LEAVES OF A GRAPE VINES VA- RIETAL COLLECTION ON A TEMPERATURE CLINE

Grape (Vitis vinifera) is one of the world’s oldest agricultural fruit crops, grown for wine, table grape, raisin, and other products. One of the factors that can cause a reduction in the grape growing area is temperature rise due to climate change. Elevated temperature causes changes in grapevine phenology and fruit chemical composition. Previous studies showed that grape varieties respond differently to a temperature shift of 1.5°C; few varieties had difficulties in the fruit development or could not reach the desired Brix level.

Do we have convergence or divergence in firms’ production and business practices in the global wine industry? 

Wine production is a globally significant and intricate industry, characterized by diverse regions, grape varieties, and producers. Competitive advantage in wine production and marketing arises from localized natural attributes known as terroir, combined with transferable expertise in agronomic practices, winemaking methods, packaging, distribution, and marketing. Wine is a very globalized product with 40% of the total output exported. Globalization has prompted discussions on convergence of business and production practices across industries, driven by technological progress and adoption of international standards. However, persisting differences in cultural norms, institutional frameworks, and regulatory environments hinder full convergence.

Rootstocks: how the dark side of the vine can enlight the future?

Global challenges, including adaptation to climate change, decrease of the environmental impacts and maintenance of the economical sustainability shape the future of viticulture.