Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Sensory and chemical phenotyping of wines from a F1 grapevine population

Sensory and chemical phenotyping of wines from a F1 grapevine population


The European Green Deal, a concept of the European Commission, aims at the reduction of pesticides in EU agriculture for 2030 by 50%. Viticulture uses the largest amounts of fungicides in the EU, compared to other crops such as grains. In order to achieve the ambitious target of 50% pesticide reduction in viticulture, the increased cultivation of new pathogen-resistant grape varieties is indispensable. New pathogen-resistant grape varieties, which have been selected for their high quality potential, allow up to 80% less fungicide use. These varieties are therefore an important building block in the transformation process to more sustainable viticulture. The project Predictive Breeding for Wine Quality »SelWineQ« (Select Wine Quality) focuses on the development of robust predictive models for the genetic quality potential (GQP) of grapevine varieties during the breeding process based on sensory, metabolomic, and genomic data. Predictive models for wine quality traits will considerably increase the efficiency of grapevine breeding. The centerpiece of the “SelWineQ” project is an F1 breeding population of Calardis Musqué and Villiard blanc consisting of 150 genotypes (8 vines each). Over three vintages experimental wines of each genotype were made. Every year a professional trained panel evaluated the wines of all genotypes. This sensory evaluation forms a broad data basis for modeling sensory quality traits from genetic and metabolic data. One of the most important results from the sensory evaluation is the “Total Quality Score”, a sum parameter for the olfactory and gustatory total quality of the wines. This quality parameter was found to be constant for the best and worst wines of the breeding population over several years. Thus, the best and worst wines could be reproducibly identified. This result shows, besides an excellent panel performance, that the quality potential is mainly determined by the genetic properties of the plants and that environmental influences (different vintages) are less important. The combination of analytical data and data from the sensory evaluation facilitated the identification of linalool and cis-rose oxide (among other terpenoids) as molecular quality markers. These aroma-active compounds were present in the best evaluated wines far above their olfactory threshold and showed a high correlation (r > 0.7 Pearson) with the attribute “floral”. Moreover, metabolomic data from non-targeted LC-HRMS and GC-MS analysis allowed predictions of the best and worst genotypes from one to the other vintage (model building on one vintage, validation on another vintage). These findings form a solid base for the development, improvement and validation of predictive models based on genetic data. A novel genotyping by sequencing approach lead to a full informative genetic map of the breeding population based on SNP markers.


Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article


Jochen Vestner

Institute for Viticulture and Oenology, DLR Rheinpfalz, Breitenweg 71, Neustadt an der Weinstraße, Germany. ,Ulrich Fischer, Institute for Viticulture and Oenology, DLR Rheinpfalz, Breitenweg 71, Neustadt an der Weinstraße, Germany.

Contact the author


pathogen-resistant, grape varieties ,molecular markers, genetics, sensory, aroma, breeding


Related articles…

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.

Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

San Joaquin Valley accounts for 40% of wine grape acreage and produces 70% of wine grape in California. Fruit quality is one of most important factors which impact the economical sustainability of farming wine grapes in this region. Due to the recent drought and expected labor cost increase, the wine industry is thrilled to understand how to improve fruit quality while maintaining the yield with less water and labor input. The present study aims to study the interactive effects of mechanical leafing and deficit irrigation on yield and berry compositions of Cabernet Sauvignon grown in warm climate of California.

The effects of cane girdling on berry texture properties and the concentration of some aroma compounds in three table grape cultivars

The marketability of the table grapes is highly influenced by the consumer demand; therefore the market value of the table grapes is mainly characterized by its berry size, colour, taste and texture. Girdling could cause accumulation of several components in plants above the ringing of the phloem including clusters and resulting improved maturity. The aim of the experiments was to examine the effect of girdling on berry texture characteristics and aroma concentration.

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Yields in the novel viticulture training system Semi-Minimal-Pruned Hedge (SMPH) are generally higher compared to the traditional Vertical Shoot Positioning (VSP). Excessive yields have a negative impact on the vine and wine quality, which can result in substantial losses in yield in subsequent vintages (alternate bearing) or penalties in fruit quality. Therefore yield regulation is essential. The bunch architecture in SMPH differs from VSP. Generally there is a higher amount but smaller bunches with lower single berry weights in SMPH compared to VSP.