Macrowine 2021
IVES 9 IVES Conference Series 9 Effect of SO2, GSH and gallotannins on the shelf-life of a cortese white wine

Effect of SO2, GSH and gallotannins on the shelf-life of a cortese white wine

Abstract

AIM: Studying the effect of the addition of reduced glutathione (GSH) and/or gallotannins at bottling to limit the use of SO2 in white winemaking.

METHODS: Two aliquots of a Cortese white wine were oxygenated respectively to 5.5 ppm (experiment A) and 3 ppm (experiment B) of O2. The additives (SO2, gallotannins, GSH) were added at bottling at 2 levels following a full factorial plan: 20-60 mg/L of free SO2; absence/presence (40 mg/L) of tannins, absence/presence (20 mg/L) of GSH.

Experiment A was monitored during 12 months of storage (colour, polyphenolic composition, GSH, free and total SO2); the samples of experiment B were analyzed and the sensory profiles were defined 15 months after bottling. The oxygen consumption rate (OCR) was measured with a luminescence-based technology.

RESULTS: SO2 was the only additive that increased OCR and decreased colour intensity, without any effect on polyphenols content and HCTA. The presence of GSH limited the oxidative losses of SO2, mostly in the wines with higher SO2 levels. The effect of GSH decreased over time: after 8 months GSH was only present in traces. A higher SO2 content, though not statistically significant, was  still observed 12 months after bottling in the samples with both tannins and GSH. The sensory analyses distinguished the samples for the colour and some olfactory descriptors. The samples with GSH had more intense licorice notes and lower pinapple notes.

CONCLUSIONS

The oxidative browning of wines during bottle storage was limited only by the residual presence of free SO2: the colour intensity and the free SO2 content are inversely correlated. The addition of GSH, alone or together with tannins, reduced the losses of free SO2. The low efficacy of GSH could be due to the low dosage used.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Silvia Motta 

Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria – Centro di Ricerca Viticoltura ed Enologia, via P. Micca 35, 14100 Asti, Italy,Maria Carla Cravero*, Massimo Guaita*, Maria Rosa Lottero*, Antonella Bosso* *Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria – Centro di Ricerca Viticoltura ed Enologia, via P. Micca 35, 14100 Asti, Italy

Contact the author

Keywords

oxygen, glutathione, tannins, SO2, white wine

Citation

Related articles…

The Soil Component of Terroir

Evidence for a specific effect of soil mineral composition on wine character is largely anecdotal. However, soil potassium supply to the vine must be properly balanced between deficiency and excess for good fruit quality.

Heat-stress responses regulated via a MYB24-MYC2 complex

Throughout the growing season, grapevine frequently encounters environmental challenges associated with heat and light radiation stress, especially during the ripening stage, thereby constraining the yield and quality of berries. MYB24 has been previously proposed to control light responses during late fruit ripening stages, and it has been found to require the co-factor MYC2. We have generated transcriptomic data from grapevine leaves transiently co-transformed with MYB24 and MYC2. Differential expression analysis revealed 179 up-regulated genes (URGs). Considering tissue specificity, where MYB24 is specifically and highly expressed in flowers and late-ripening berries, the expression of these URGs was explored using a previously published Berry Development Atlas gathering berry development data of cv. ‘Pinot Noir’ and ‘Cabernet Sauvignon’ in different vintages.

White grape must processed by UHPH as an alternative to SO2 addition: Effect on the phenolic composition in three varieties

The quantity and distribution of polyphenols in musts play a fundamental role in the white winemaking. This is because these substances are exposed to oxidation reactions, which are catalysed by the polyphenol oxidase (PPO), leading to a decrease in the quality of the wines produced. PPO is inactivated by SO2, but currently, due to the restrictions of the legislation, other methodologies are being investigated. Ultra-High Pressure Homogenization (UHPH) is a non-thermal physic technology that exerts an ultrahigh pressure pumping (>200 MPa) of a fluid through a valve in a continuous system.

Genetic and hormonal regulation of grape berry cuticle formation

The plant surface typically comprises of various epidermal cell types which synthesise and deposit a protective waxy layer known as the cuticle. The cuticle is a significant contributor to important crop traits related to drought tolerance, biotic stress, postharvest fruit quality as well as providing structural support. In this work we have investigated grape berry cuticle formation in the context of the accumulation of anti-fungal specialised metabolites and the ability of the cuticle to structurally cope with the rapid expansion of ripening berries. Metabolic QTL analysis was performed in a grapevine cross population, using chemical profiling data collected via GC-MS analysis for cuticular waxes.

Rootstock effects on Grüner Veltliner ecophysiology in the Kremstal wine region of Austria

Understanding the impact of rootstocks on grapevine water relations is crucial to face climate change maintaining vineyard productivity and sustainability.

Macrowine 2021
IVES 9 IVES Conference Series 9 Effect of SO2, GSH and gallotannins on the shelf-life of a cortese white wine

Effect of SO2, GSH and gallotannins on the shelf-life of a cortese white wine

Abstract

Content of the article

References

Section for all references

DOI:

Publication date: September 14, 2021

Issue: (ex: Issue: Terclim 2023)

Type: typeofpublication

Authors

author1, author2, author3

Presenting author

Description

List of affiliations ¹ ² ³

Contact the author

Email address (with mailto: link)

Keywords

List of different keywords (keyword1, keyword2, keyword3)

Tags

Citation

Related articles…

AGEING REVEALS THE TERROIR OF AGED RED BORDEAUX WINES REGARDLESS OF THE VINTAGES! TARGETED APPROACH USING ODOROUS COMPOUNDS LEVELS INCLUDING TERPENES AND C13 NORISOPRENOIDS

The chemistry of wine is notably complex and is modified by ageing of the bottles. The composition of wines is the result of vine production (under the influence of vintage, climate and soils); yeast production (under the influence of juice composition and fermentation management); lactic bacteria production (under the influence of young wine composition and malolactic fermentation management); and of the ageing process either in vats, barrels or bottles or both. The composition is linked to the quality perceived by consumers but also to their origin, sometimes associated to the “terroir” concept.

Monferace a new “old style” for Grignolino wine, an autochthonous Italian variety: unity in diversity

Monferace project is born from an idea of 12 winegrowers willing to create a new “old style” Grignolino wine and inspired byancient winemaking techniques of this variety (1). Monferace wine is produced with 100% Grignolino grapes after 40 months of ageing, of which 24 in wooden barrels of different volumes. Grignolino is an autochthonous Italian variety cultivated in Piedmont (north-west Italy), recently indicated as a “nephew” of the famous Nebbiolo (2) and is used to produce three different DOC wines. The Monferace Grignolino is cultivated in the geographical area identified in the Aleramic Monferrato, defined by the Po and Tanaro rivers, in the heart of Piedmont and the produced wine is characterized by a high content of tannins, marked when young, that evolve over the years. Its color is generally slight ruby red and garnet red with orange highlights with ageing.

Characterization of vine performance using remote sensing tools

Today, a variety of remote sensing tools are used to characterise plant performance. However, the vine is rarely studied, as a major crop specificity is canopy discontinuity. Registered images of the vineyard are anisotropic, therefore difficult to analyse.

Biochemical responses of crimson seedless (Vitis vinifera) grapevines to altered micro climatic conditions and different water treatments in the Breede River Valley of South Africa

The South African Table grape industry has to expand to new markets with high quality niche products, but limited water availability threatens sustainable production. To overcome this challenge and to obtain high-quality products for the new markets, require constant technological advancement. Currently, limited available scientific information about growth balances and physiology and especially grape quality parameters, hinders technological advancement and thus efficient regulatory management of the morphological, chemical, and pathological status of table grapes, especially in response to abiotic factors.

Testing the pathogen e-learning and field training course on grapevine virus knowledge and management

One of the reasons of the spread of grapevine virus diseases in
vineyards around the world is the lack of knowledge by the main actors of the wine sector. To face this problem, five partners worked together to develop the PAThOGEN project, a training program aimed to improve grapevine virus knowledge and management. The partnership gathers one French technical center (IFV), one Spanish university (USC), one Italian applied research center (CREA), one Spanish foundation
specialized in training and technology transfer (FEUGA) and one Italian SME specialized in the development of informatics tools and in knowledge transfer (HORTA).The objectives of PAThOGEN are: (i) to develop and
maintain a high-quality work-based Vocational and Education Training program, (ii) to improve the skills of professionals of the wine sector.