Macrowine 2021
IVES 9 IVES Conference Series 9 Effect of SO2, GSH and gallotannins on the shelf-life of a cortese white wine

Effect of SO2, GSH and gallotannins on the shelf-life of a cortese white wine

Abstract

AIM: Studying the effect of the addition of reduced glutathione (GSH) and/or gallotannins at bottling to limit the use of SO2 in white winemaking.

METHODS: Two aliquots of a Cortese white wine were oxygenated respectively to 5.5 ppm (experiment A) and 3 ppm (experiment B) of O2. The additives (SO2, gallotannins, GSH) were added at bottling at 2 levels following a full factorial plan: 20-60 mg/L of free SO2; absence/presence (40 mg/L) of tannins, absence/presence (20 mg/L) of GSH.

Experiment A was monitored during 12 months of storage (colour, polyphenolic composition, GSH, free and total SO2); the samples of experiment B were analyzed and the sensory profiles were defined 15 months after bottling. The oxygen consumption rate (OCR) was measured with a luminescence-based technology.

RESULTS: SO2 was the only additive that increased OCR and decreased colour intensity, without any effect on polyphenols content and HCTA. The presence of GSH limited the oxidative losses of SO2, mostly in the wines with higher SO2 levels. The effect of GSH decreased over time: after 8 months GSH was only present in traces. A higher SO2 content, though not statistically significant, was  still observed 12 months after bottling in the samples with both tannins and GSH. The sensory analyses distinguished the samples for the colour and some olfactory descriptors. The samples with GSH had more intense licorice notes and lower pinapple notes.

CONCLUSIONS

The oxidative browning of wines during bottle storage was limited only by the residual presence of free SO2: the colour intensity and the free SO2 content are inversely correlated. The addition of GSH, alone or together with tannins, reduced the losses of free SO2. The low efficacy of GSH could be due to the low dosage used.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Silvia Motta 

Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria – Centro di Ricerca Viticoltura ed Enologia, via P. Micca 35, 14100 Asti, Italy,Maria Carla Cravero*, Massimo Guaita*, Maria Rosa Lottero*, Antonella Bosso* *Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria – Centro di Ricerca Viticoltura ed Enologia, via P. Micca 35, 14100 Asti, Italy

Contact the author

Keywords

oxygen, glutathione, tannins, SO2, white wine

Citation

Related articles…

The impact of differences in soil texture within a vineyard on vine development and wine quality

Marlborough Sauvignon Blanc has rapidly gained an international reputation for style and quality. The extent to which this can be attributed to the climate, soils or vineyard management is at present unclear. However, the young alluvial soils of the Wairau Plains are considered to play an important role in determining this unique wine style. Marked changes in soil texture occur on the Wairau Plains over short distances.

Grapevine responses to Botrytis cinerea infection: noble rot versus grey rot

The intricate relationship between the necrotrophic pathogen Botrytis cinerea and grape berries (Vitis vinifera spp.) can lead to the development of either the desirable noble rot (NR) or the unfavourable grey rot (GR), depending on the prevailing weather conditions.

Adsorption of tetraconazole by organic residues and vineyard organically-amended soils 

Spain is the country with the largest wine-producing area in the EU and its productivity is largely controlled applying fungicides. However, residues of these compounds can move and contaminate surface and groundwater. The objective of this work was to evaluate the capacity of bioadsorbents from different origin to adsorb and immobilize tetraconazole by themselves or when applied as organic soil amendment, and to prevent soil and water contamination by this fungicide. The adsorption of tetraconazole by 3 organic residues: spent mushroom substrate (SMS), green compost (GC) and vine pruning sawdust (VP), as well as by vineyard soils unamended and amended individually with these residues at 1.5% (w/w) was evaluated using the batch equilibrium technique.

New disease-resistant grapevine varieties response to drought under a semi-arid climate

In many regions, climate change leads to an increase in air temperature combined with a reduction of rainfall, intensifying climatic demand and water deficits (WD) (Cardell et al. 2019), which in turn may negatively impact grapevine development, yield and grape composition (Santos et al. 2020). In addition, climate change may also increase disease pressure, leading to further yield and quality losses, besides increasing costs due to increased vineyard spraying (Santos et al. 2020) and reducing viticulture acceptability by consumers (Guichard et al. 2017). Adopting new resistant varieties appears as a promising long-term solution to better manage vine protection, but unfortunately little is known regarding their behavior in front of WD.

Identification and characterization of polyphenols in fining precipitate

Polyphenols are secondary metabolite widely distributed in plant kingdom such as in fruits, in grapes and in wine. During the winemaking process, polyphenols are extract from the skin and seed of the berries.

Macrowine 2021
IVES 9 IVES Conference Series 9 Effect of SO2, GSH and gallotannins on the shelf-life of a cortese white wine

Effect of SO2, GSH and gallotannins on the shelf-life of a cortese white wine

Abstract

Content of the article

References

Section for all references

DOI:

Publication date: September 14, 2021

Issue: (ex: Issue: Terclim 2023)

Type: typeofpublication

Authors

author1, author2, author3

Presenting author

Description

List of affiliations ¹ ² ³

Contact the author

Email address (with mailto: link)

Keywords

List of different keywords (keyword1, keyword2, keyword3)

Tags

Citation

Related articles…

Carbon isotope discrimination in berry juice sugars: changes in response to soil water deficits across a range of vitis vinifera cultivars

In wine producing regions around the world, climate change has the potential to decrease the frequency and amount of precipitation and increase average and extreme temperatures. This will lower soil water availability and increase evaporative demand, thereby increasing the frequency and intensity of water deficit experienced in vineyards. Among other things, grapevines manage water deficit by regulating stomatal closure. The dynamics of this regulation, however, have not been well characterized across the range of Vitis vinifera cultivars. Providing a method to understand how different cultivars regulate their stomata, and hence water use in response to changes in soil water deficits will help growers manage vineyards and select plant material to better meet quality and yield objectives in a changing climate.

Improving shelf life of viticulture-relevant biocontrol and biostimulant microbes using CITROFOL® AI as liquid carrier

Bacillus velezensis and Trichoderma harzianum are relevant microorganisms used in viticulture as biocontrol agents against pathogens of trunk (e.g. Phaeoacremonium minimum), leaves (e.g. Plasmopara viticola) or fruit (e.g. Botrytis cinerea), or as biostimulants, improving the resilience of plants against biotic or abiotic stressors through different direct and non-direct interactions.
In this biotechnological approach, formulation plays a crucial role. Controlling water activity in the product, thus stabilising microbial viability is key to ensuring effective application. We present the benefits of the citrate ester CITROFOL® AI (triethyl citrate) as a novel bio-based carrier liquid in microbial formulations. CITROFOL® AI is safe for humans and the environment, thus offering a promising base for sustainable treatments in viticulture.

Biological control of the vineyard: new microbiological findings from CREA-VE

According to the Food and Agriculture Organisation (FAO), 75.866 km2 of the world is dedicated to grape cultivation. About 71.0% of the world’s grape production is destined for winemaking, 27.0% for consumption as fresh fruit and 2.0% as raisin. Grape production is mainly hindered by fungal infections, that can develop both in field and post-harvest.

Corvina and Corvinone grape berries grown in different areas and their aptitude to postharvest dehydration

The Valpolicella area (Veneto Region, Italy) is famous for its high quality wines: Amarone and Recioto, both obtained from partial post-harvest dehydrated red grapes.

Pests and biodiversity management on a climate change scenario: A practical case

The weather anomalies comparing the 1971-2000 time frame and the last years has showned a dramatic scenario when, in some months, average temperature in above 3ºC and the reduction in precipitation in more than 30%.