Macrowine 2021
IVES 9 IVES Conference Series 9 Investigating the impact of bottle color, temperature and light exposure on rose wine characteristics

Investigating the impact of bottle color, temperature and light exposure on rose wine characteristics

Abstract

Rosé is leading the fastest growth wine category which hit a 40% increase since 2002. France accounts for over a third (34%) of global consumption followed by the US at 16%. The majority of rose wines are bottled in clear bottles. There are a range of factors that impact the selection of bottle color for wine storage, but consumer’s acceptance seems to be one factor where market forces drive the use of lighter colored glass bottles over dark green, brown or blue glass. Post-bottling storage is also a critical phase for rosé wine. Bottled wine can be exposed to UV-visible light and temperature fluctuations for relatively long periods of time in retail stores, restaurants and domestic settings, resulting in degradation with color and aroma changes. This research studied the impact of bottle color, light exposure and temperature on rosé wine quality. Four rosé wines with different organoleptic characteristics and chemical composition (color, phenolic, sugar and alcohol content) were bottled in clear and green bottles and stored under three different light conditions (darkness, fluorescent bulb and cool white LED bulb) at cellar (15C) and room temperature (20C). Color, basic chemical analysis, aroma profile, phenolics and reductive compounds were determined after 0, 3 and 6 months of storage. The color and phenolic composition were determined by spectrophotometric analysis and RP-HPLC. Potential changes in aroma were determined through volatile screening of the wines using SPME-GC-MS. Reductive compounds were also determined by SPME-GC-MS. Changes in wines were detectable after 3 months and more noticeable after 6 months of storage. Basic chemical analysis showed a decrease in free and total SO2 for all the samples analyzed with the largest impact found on the samples stored under fluorescent light. Regarding color, a decrease in intensity was found in the wines stored under both light conditions over time, particularly those in clear bottles. An increase in the percentage of yellow and a decrease in the percentage of red was significant in the wines stored at 20C under fluorescent light and more pronounced in the wines with lighter color/lower phenolic content. This may be due to oxidation reactions ocurring under these conditions. Wines stored in the dark showed no significant impact on the color. There results were supported by RP-HPLC data, showing an increase in polymeric phenols and pigments and a decrease in monomeric anthocyanins. For aroma profiles, significant changes were found between the starting wines and the different time points. When focusing on aroma only, bottle color showed a smaller impact than storage temperature.Overall, all variables studied impacted rosé wine aging significantly. However, higher temperature in combination with clear glass bottles under fluorescent light were the most detrimental to rosé wine aging compared to low temperature and darkness that showed the smallest impact.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Cristina Medina-Plaza

University of California, Davis,Aubrey DUBOIS- Oregon State University Elisabeth TOMASINO- Oregon State University Anita OBERHOLSTER- University of California, Davis

Contact the author

Keywords

rose, wine, storage, shelf-life, light, temperature, bottle color

Citation

Related articles…

Enhanced polyphenol extraction during Pinot Noir and Cabernet Sauvignon wine making

The quality of red wine depends on the composition of polyphenols influencing wine color and taste. The question is, how much we must fear over extraction, especially of seed tannins, under cool climate conditions. The extraction of polyphenols from grape skins and grape seeds were investigated for the grape varieties Cabernet Sauvignon and Pinot noir

The anthocyanin profile of galician endangered varieties. A tool for varietal selection

AIM: The current loss of genetic grapevine diversity is mainly due to the reduced number of varieties used for making wine. A way of preserved endangered varieties is the establishment of germplasm banks.

Effects of different organic amendments on soil, vine, grape and wine, in a long-term field experiment in Chinon vineyard (France)

In a long-term experiment carried out in Chinon vineyard (37, France) during 23 years, the effects of several organic amendments were studied on soil, vine, grapes and wine. Four main treatments were compared on a calcareous sandy soil: control without organic amendment, dry crushed pruning wood at 2.1.t-1.ha-1.year-1 (D1), cow manure at 10 t-1. ha-1.year-1 (D1) and cow manure applied at 20 t-1.ha-1.year-1 (D2). D1 levels were calculated to fill the annual humus losses by mineralization.

Does wine expertise influence semantic categorization of wine odors?

Aromatic characterization is a key issue to enhance wines knowledge. While several studies argue the importance of wine expertise in the ability of performing odor-related sensory tasks, there is still little attention paid to the influence of expertise on the semantic representation of wine odors.

Modeling the suitability of Pinot Noir in Oregon’s Willamette Valley in a changing climate

Air temperature is the key driver of grapevine phenology and a significant environmental factor impacting yield and quality for a winegrape growing region. In this study the optimal downscaled CMIP5 ensemble for computing thegrowing season average temperature (GST) viticulture climate classification index was determined to spatially compute on a decadal basis predictions of the GST climate index and the grapevine sugar ripeness (GSR) model for Pinot Noir throughout the Willamette Valley (WV) American Viticultural Area (AVA). Forecasts for average temperature and a 220 g/L target sugar concentration level were computed using daily Localized Constructed Analogs (LOCA) downscaled CMIP5 historic and Representative Concentration Pathways (RCP) future climate projections of minimum and maximum daily temperature. We explore spatiotemporal trends of the GST climate classification index and Pinot Noir specific applications of the GSR phenology model for the WV AVA. Spatiotemporal computations of the GST climate index and Pinot Noir specific applications of the GSR model enable the opportunity to explore relationships between their computed values with one intent being to provide updated GST ranges that better align with current temperature-based modeling understanding of Pinot Noir grapevine phenology and the viticultural application of LOCA CMIP5 climate projections for the WV AVA. The Pinot Noir specific applications of the GSR model or the GST index with updated bounds indicate that the percent of the WV AVA area suitable for Pinot Noir production is currently at or near its peak value in the upper 80s to lower 90s of this century.