Macrowine 2021
IVES 9 IVES Conference Series 9 Investigating the impact of bottle color, temperature and light exposure on rose wine characteristics

Investigating the impact of bottle color, temperature and light exposure on rose wine characteristics

Abstract

Rosé is leading the fastest growth wine category which hit a 40% increase since 2002. France accounts for over a third (34%) of global consumption followed by the US at 16%. The majority of rose wines are bottled in clear bottles. There are a range of factors that impact the selection of bottle color for wine storage, but consumer’s acceptance seems to be one factor where market forces drive the use of lighter colored glass bottles over dark green, brown or blue glass. Post-bottling storage is also a critical phase for rosé wine. Bottled wine can be exposed to UV-visible light and temperature fluctuations for relatively long periods of time in retail stores, restaurants and domestic settings, resulting in degradation with color and aroma changes. This research studied the impact of bottle color, light exposure and temperature on rosé wine quality. Four rosé wines with different organoleptic characteristics and chemical composition (color, phenolic, sugar and alcohol content) were bottled in clear and green bottles and stored under three different light conditions (darkness, fluorescent bulb and cool white LED bulb) at cellar (15C) and room temperature (20C). Color, basic chemical analysis, aroma profile, phenolics and reductive compounds were determined after 0, 3 and 6 months of storage. The color and phenolic composition were determined by spectrophotometric analysis and RP-HPLC. Potential changes in aroma were determined through volatile screening of the wines using SPME-GC-MS. Reductive compounds were also determined by SPME-GC-MS. Changes in wines were detectable after 3 months and more noticeable after 6 months of storage. Basic chemical analysis showed a decrease in free and total SO2 for all the samples analyzed with the largest impact found on the samples stored under fluorescent light. Regarding color, a decrease in intensity was found in the wines stored under both light conditions over time, particularly those in clear bottles. An increase in the percentage of yellow and a decrease in the percentage of red was significant in the wines stored at 20C under fluorescent light and more pronounced in the wines with lighter color/lower phenolic content. This may be due to oxidation reactions ocurring under these conditions. Wines stored in the dark showed no significant impact on the color. There results were supported by RP-HPLC data, showing an increase in polymeric phenols and pigments and a decrease in monomeric anthocyanins. For aroma profiles, significant changes were found between the starting wines and the different time points. When focusing on aroma only, bottle color showed a smaller impact than storage temperature.Overall, all variables studied impacted rosé wine aging significantly. However, higher temperature in combination with clear glass bottles under fluorescent light were the most detrimental to rosé wine aging compared to low temperature and darkness that showed the smallest impact.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Cristina Medina-Plaza

University of California, Davis,Aubrey DUBOIS- Oregon State University Elisabeth TOMASINO- Oregon State University Anita OBERHOLSTER- University of California, Davis

Contact the author

Keywords

rose, wine, storage, shelf-life, light, temperature, bottle color

Citation

Related articles…

Impact of polyclonal selection for abiotic stress tolerance on the yield and must quality traits of grapevine varieties

The effects of climate change in viticulture are currently a major concern, with heat waves and drought affecting yield, wine quality, and in extreme cases, even plant survival. Ancient grapevine varieties have high intravarietal genetic variability that so far has been explored successfully to improve yield and must quality. Currently, there is little information available on intravarietal variability regarding responses to stress. In the current work, the intravarietal genetic variability of several Portuguese varieties was studied for yield, must quality, and tolerance to abiotic stress, through indirect, rapid, and nondestructive measurements carried out in the field.

Drought tolerance assessment and differentiation of grapevine cultivars using physiological metrics: insights from field studies

This study aimed to validate a protocol and compare metrics for evaluating drought tolerance in two Vitis vinifera grapevine cultivars under field conditions. Various metrics were calculated to represent the physiological responses of plants to progressive water deficit. Data were collected from Sauvignon Blanc and Chardonnay plants subjected to three irrigation levels during the 2022-2023 season, along with data from three previous seasons. Hydro-escape areas were used to assess the plant’s ability to reduce water potential with decreasing soil water availability.

Effects of post-fermentative cold maceration on chemical and sensory characteristics of Syrah, Cabernet Franc and Montepulciano wines

Astringency sensation decreases slowly during the aging of red wine. Complex reactions of condensation and precipitation of wine polyphenols are involved in this phenomenon. Wine composition and conditions of aging, such as temperature and oxygen availability, strongly influence evolution of the phenol matrix. Recently, a Post-Fermentative cold Maceration (PFM) technique was tested with the aim of accelerating reactions leading to the reduction of astringency and exploiting chemical compounds not extracted from the solid parts of grapes during the previous traditional maceration phase. To this purpose, an innovative maceration system was engineered and used to perform PFM trials on marc derived from vinification of different varieties of red grapes.

ViniGWAS – improving the selection of climate-resilient grapevine varieties

Climate change and its consequences are becoming an increasing challenge for viticulture. The breeding of new grapevine varieties that are better adapted to the changing conditions offers a possible solution.

Influence of inactive dry yeast treatments during grape ripening on postharvest berry skin texture parameters and phenolic compounds extractability

Inactive dry yeast treatments in the vineyard are a tool used with the aim to improve the concentration and quality of secondary metabolites in grapes, leading to a better differentiation of the wines made from grapes differently treated. In this work, a foliar spraying treatment with yeast derivatives specifically designed to be used with the patent pending application technology of Lallemand Inc. Canada (LalVigne® Mature, Lallemand Inc., Montreal, Canada) was tested on Vitis vinifera L. cv. Barbera and Nebbiolo black winegrapes. The aim was to evaluate the effect of this treatment on the phenolic compounds accumulation, the skin physical-mechanical properties and the related phenolic extractability. Prior to analysis, the berries were sorted by flotation in order to evaluate their distribution by density class, and to determine the skin texture parameters of berries with different sugar contents, thus understanding also the ripening effect.