Terroir 2010 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2010 9 Geology and Soil: effects on wine quality (T2010) 9 Evaluation of two transmittance meters in estimating chlorophyll and nitrogen concentrations in grapevine cultivars

Evaluation of two transmittance meters in estimating chlorophyll and nitrogen concentrations in grapevine cultivars

Abstract

Two transmittance-based chlorophyll meters (SPAD-502 and CCM-200) were evaluated in estimating chlorophyll (Chl) and nitrogen (N) levels in grapevine leaves. The study was conducted in a fertilization experiment [0 (N0), 60 (N1) and 120 (N2) kg N/ha] during the summer 2009, in two commercial vineyards located in Northern Greece and planted with cvs Cabernet-Sauvignon and Xinomavro (Vitis vinifera L.). When data were pooled over cultivars and samplings, leaves of N2 vines had the highest N and Chl content, as well as SPAD and CCM readings, followed by the respective values of N1. However, neither of the devices could detect the seasonal decline in leaf N and Chl content. Significant relationships between extracted Chl and measured leaf N were found in both cultivars. A strong linear function related SPAD and CCM readings in both cultivars. Total Chl and N were strongly correlated with SPAD and CCM readings in Cabernet Sauvignon (p<0.001) while relationships were poor for SPAD and not significant for CCM in Xinomavro. The results suggest that non-destructive chlorophyll estimations by transmittance-based meters are not applicable in all situations without specific estimations by transmittance-based meters are not applicable in all situations without specific calibrations necessary to improve their utility and accuracy over grapevine cultivars.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

D. Taskos (1), K. Karakioulakis (2), N. Theodorou (2), J.T. Tsialtas (3), E. Zioziou (2), N. Nikolaou(2), S. Koundouras (2)

(1) Boutari S.A., Goumenissa Winery, 613 00 Goumenissa, Greece
(2) Laboratory of Viticulture, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece
(3) NAGREF, Cotton and Industrial Plants Institute, 574 00 Sindos, Greece

Contact the author

Keywords

SPAD-502, CCM-200, chlorophyll, nitrogen, grapevine, N fertilization

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

New Insights into Wine Color Analysis: A Comparison of Analytical Methods and their Correlation with Sensory Perception

wo spectrophotometric methods are recommended by the Organisation Internationale de la vigne et du vin (OIV). The first is the method after Glories, were the absorbances at 420 nm, 520 nm and 620 nm are measured (OIV 2006a).

Impact of the pre-fermentative addition of enological adjuvants on the development of UTA in wines

During alcoholic fermentation and wine aging, indole-3-acetic acid (IAA) can degrade into 2-aminoacetophenone (AAP). The presence of reasonable amount of AAP in wines is regarded as the main cause of untypical ageing

Analytical and Chemometric Investigation of Phenolic Content of South African Red Wines

Phenolic compounds have been the focus of a lot of research in recent years for their important contribution to sensory characteristics of wine, their beneficial health effects, as well as the possibility they offer of characterising wines. In this contribution, a method is developed that allows the direct injection of wine samples followed by liquid

Geological characterization of plot belonging to the left bank terraces terroir of the Gaillac vineyard (Tarn, Midi-Pyrénées). Consequences on determination of choice of vegetative material

Detailed geological analyses of a plot belonging to the « AOC Gaillac » area have been carried out. This plot belongs to the left bank terraces of the Tarn River which coinciding with one of the three main terroirs of the AOC area. It is localised on the rissian-aged (≈ 200 000 yrs B.P.)

Late frost protection in Champagne

Probably one of the most counterintuitive impacts of climate change on vine is the increased frequency of late frost. Champagne, due to its septentrional position is historically and regularly affected by this meteorological hazard. Champagne has therefore developed a strong experience in frost protection with first experiments dating from the end of 19th century. Frost protection can be divided in two parts: passive and active. Passive protection includes all the methods that do not seek to modify the vine’s environment or resistance at the time of frost. The most iconic passive protection in Champagne is the establishment of the individual reserve. This reserve allows to stock a certain quantity of clear wine during a surplus year to compensate a meteorological hazard like frost during the following years. Other common passive methods are the control of planting area (walls, bushes, topography), the choice of grape variety, late pruning, or the impact of grass cover and tillage. Active frost protection is also divided in two parts. Most of the existing techniques tend to modify vine’s environment. Most of the time they provide warmth (candles, heaters, windmills, heating cables…), or stabilise bud’s temperature above a lethal threshold (water sprinkling). The other way to actively fight is to enhance the resistance of buds to frost (elicitors). The Comité Champagne evaluates frost protection methods following three main axes: the efficiency, the profitability, and the environmental impact through a lifecycle assessment. This study will present the results on both passive and active protection following these three axes.