Macrowine 2021
IVES 9 IVES Conference Series 9 Impact of mannoproteins structural features on the colloid stability when facing different kinds of wine polyphenols

Impact of mannoproteins structural features on the colloid stability when facing different kinds of wine polyphenols

Abstract

The aim was to study the impact of structural features in the polysaccharide moiety of mannoproteins on their interaction with polyphenols and the formation of colloidal aggregates. To this end, mannoproteins fractions were extracted from four different yeast strains: a commercial enological strain (MP-com), the wild-type BY4742 strain (MP-WT) and its mutants ΔMnn4 (MP-Mnn4) and ΔMnn2 (MP-Mnn2). The Mnn4p and Mnn2p are responsible for mannosyl-phosphorylation and branching of the N-glycosylation backbone [1]. Enzymatic extraction was performed using a commercial Endo-beta-1,3-Glucanase of Trichoderma sp. (E-LAMSE, Megazym)[2]. Mannoprotein fractions were thoroughly characterized by composition of their polysaccharide and protein moieties, branching degree, net charge, molecular weight distribution, static and dynamic molecular parameters [3]. Their interactions with seed tannins and a pool of red wine polyphenols and the formation of colloidal aggregates were studied in model solutions at different polyphenol/mannoprotein ratios through Dynamic Light Scattering (DLS). Model solutions were followed during one month. The number and size distribution of colloidal aggregates was determined by Nanoparticle Tracking Analysis (NTA).The four Mannoprotein fractions had broad and high molecular weight distributions, as well as similar protein, polysaccharide mass % and amino acid composition. However, they showed different proportions of mannose and glucose and the structural characterization of the polysaccharide moiety confirmed the expected differences between MP-WT, MP-Mnn2, and MP-Mnn4. DLS and NTA experiments indicated a two-step interaction process between seed tannins and mannoproteins: an immediate formation of colloidal aggregates (150-300 nm), followed by a very progressive evolution related to a reversible aggregate flocculation. The number, dispersity and extent of flocculation were dependent on the tannin/MP ratio. So far, no notable differences were evidenced between the four MP fractions. With the polyphenol pool of red wine, neither DLS nor NTA experiments were able to evidence the formation of colloidal aggregates. This does not mean that interactions do not exist[4,5]. Although the mannoproteins used had different polysaccharide compositions, structures, and properties, no difference in terms of colloidal behavior when in solution with tannins or wine polyphenols was evidenced by the methods applied. Thus, neither the absence of mannosyl phosphate groups (MP-Mnn4) nor the absence of branching of the outer chains of the N-glycosylated carbohydrate structures (MP-Mnn2) seems to play a determining role in the colloidal behavior of mannoproteins in the presence of seed tannins or red wine polyphenols.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Saul Assunção Bicca

UMR-SPO, University of Montpellier, INRAE, Montpellier Supagro, Montpellier, France,Thierry, DOCO, UMR-SPO, University of Montpellier, INRAE, Montpellier Supagro, Montpellier, France Céline, PONCET-LEGRAND, UMR-SPO, University of Montpellier, INRAE, Montpellier Supagro, Montpellier, France Pascale, WILLIAMS, UMR-SPO, University of Montpellier, INRAE, Montpellier Supagro, Montpellier, France Julie MEKOUE N’GUELA, UMR-SPO, University of Montpellier, INRAE, Montpellier Supagro, Montpellier, France & Lallemand SAS, Blagnac, France Aude VERNHET, UMR-SPO, University of Montpellier, INRAE, Montpellier Supagro, Montpellier, France

Contact the author

Keywords

mannoproteins, colloidal stability, wine interactions

Citation

Related articles…

Sustainability and resilience in the wine sector

Resilience and sustainability are two fundamental concepts in the sustainable development of the wine sector, being closely interconnected.

Study of Spanish wine sensory analysis data over a 3-year period

This study presents an investigation based on sensory analysis data of Spanish wines with geographical indications collected over a three-year period. Sensory analysis plays a crucial role in assessing the quality, characteristics, and perception of wines. The trained tasting panel at Dolmar Laboratory, accredited for objective sensory evaluation of wines since 2016, has been tasting over 5000 wines. However, it is since 2021, when a computer application for tastings was developed, that the digitalization of data allows for detailed statistical analysis of the results.

Anthocyanin composition and sensory properties of wines from Portuguese and international varieties cultivated in a hot and dry region of Portugal

The study of anthocyanins in wines and grapes has been the subject of numerous research works over the years due to their important role in enology regarding their contribution to wine sensory properties.

Grapevine nitrogen retrieval by hyperspectral sensing at the leaf and canopy level

Grapevine nitrogen (N) monitoring is essential for efficient N management plans that optimize fruit yield and quality while reducing fertilizer costs and the risk of environmental contamination. Unlike traditional vegetative-tissue sampling methods, remote sensing technologies, including hyperspectral imaging, have the potential to allow monitoring of the N status of entire vineyards at a per-vine resolution. However, differential N partitioning, variable spectral properties, and complex canopy structures hinder the development of a robust N retrieval algorithm. The present study aimed to establish a solid understanding of vine spectroscopic response at leaf and canopy levels by evaluating the different nitrogen retrieval approaches, including the radiative transfer model.