Macrowine 2021
IVES 9 IVES Conference Series 9 Impact of mannoproteins structural features on the colloid stability when facing different kinds of wine polyphenols

Impact of mannoproteins structural features on the colloid stability when facing different kinds of wine polyphenols

Abstract

The aim was to study the impact of structural features in the polysaccharide moiety of mannoproteins on their interaction with polyphenols and the formation of colloidal aggregates. To this end, mannoproteins fractions were extracted from four different yeast strains: a commercial enological strain (MP-com), the wild-type BY4742 strain (MP-WT) and its mutants ΔMnn4 (MP-Mnn4) and ΔMnn2 (MP-Mnn2). The Mnn4p and Mnn2p are responsible for mannosyl-phosphorylation and branching of the N-glycosylation backbone [1]. Enzymatic extraction was performed using a commercial Endo-beta-1,3-Glucanase of Trichoderma sp. (E-LAMSE, Megazym)[2]. Mannoprotein fractions were thoroughly characterized by composition of their polysaccharide and protein moieties, branching degree, net charge, molecular weight distribution, static and dynamic molecular parameters [3]. Their interactions with seed tannins and a pool of red wine polyphenols and the formation of colloidal aggregates were studied in model solutions at different polyphenol/mannoprotein ratios through Dynamic Light Scattering (DLS). Model solutions were followed during one month. The number and size distribution of colloidal aggregates was determined by Nanoparticle Tracking Analysis (NTA).The four Mannoprotein fractions had broad and high molecular weight distributions, as well as similar protein, polysaccharide mass % and amino acid composition. However, they showed different proportions of mannose and glucose and the structural characterization of the polysaccharide moiety confirmed the expected differences between MP-WT, MP-Mnn2, and MP-Mnn4. DLS and NTA experiments indicated a two-step interaction process between seed tannins and mannoproteins: an immediate formation of colloidal aggregates (150-300 nm), followed by a very progressive evolution related to a reversible aggregate flocculation. The number, dispersity and extent of flocculation were dependent on the tannin/MP ratio. So far, no notable differences were evidenced between the four MP fractions. With the polyphenol pool of red wine, neither DLS nor NTA experiments were able to evidence the formation of colloidal aggregates. This does not mean that interactions do not exist[4,5]. Although the mannoproteins used had different polysaccharide compositions, structures, and properties, no difference in terms of colloidal behavior when in solution with tannins or wine polyphenols was evidenced by the methods applied. Thus, neither the absence of mannosyl phosphate groups (MP-Mnn4) nor the absence of branching of the outer chains of the N-glycosylated carbohydrate structures (MP-Mnn2) seems to play a determining role in the colloidal behavior of mannoproteins in the presence of seed tannins or red wine polyphenols.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Saul Assunção Bicca

UMR-SPO, University of Montpellier, INRAE, Montpellier Supagro, Montpellier, France,Thierry, DOCO, UMR-SPO, University of Montpellier, INRAE, Montpellier Supagro, Montpellier, France Céline, PONCET-LEGRAND, UMR-SPO, University of Montpellier, INRAE, Montpellier Supagro, Montpellier, France Pascale, WILLIAMS, UMR-SPO, University of Montpellier, INRAE, Montpellier Supagro, Montpellier, France Julie MEKOUE N’GUELA, UMR-SPO, University of Montpellier, INRAE, Montpellier Supagro, Montpellier, France & Lallemand SAS, Blagnac, France Aude VERNHET, UMR-SPO, University of Montpellier, INRAE, Montpellier Supagro, Montpellier, France

Contact the author

Keywords

mannoproteins, colloidal stability, wine interactions

Citation

Related articles…

Olfactometry approach to assess odorant compounds of grape spirits used for Port wine production-first results

The production of Port Wine requires the addition of grape spirit to stop the fermentation, ensuring the desired sweetness

Methodological advances in relating deep root activity to whole vine physiology

Full understanding of grapevine responses to variable soil resources requires
assessing the grapevine root system. Grapevine root systems are expansive and examining deep roots (i.e., >40 cm)
is particularly important in conditions where grapevines increase reliance on deep soil resources, such as drought
or plant competition. Traditional methods of assessing roots rely on morphological traits associated specific
functions (e.g., root color, diameter, length), while recent methodological advances allow for estimating root
function more directly (e.g., omics). Yet, the potential of applying refined methods remains underexplored for roots
at deep depths.

Somatic embryogenesis and organogenesis: driving regeneration forces behind grapevine genetic transformation

Cell pluripotency, enables the possibility to change the cellular fate, stimulating the reorganization and the formation of new vegetative structures from differentiated somatic tissues. Although several factors are implicated in determining the success of a breeding program through the use of modern biotechnological techniques, the definition of a specific regeneration strategy is fundamental to speed up and make these applications feasible.

Recovery of olfactory capacity following a COVID-19 infection

In this video recording of the IVES science meeting 2021, Sophie Tempère (Institut des Sciences de la Vigne et du Vin – ISVV, Université de Bordeaux) speaks about the recovery of olfactory capacity following a COVID-19 infection. This presentation is based on an original article accessible for free on IVES Technical Reviews.

Characterization of simple polyphenols in seeds of autochthonous grapevine varieties grown in Croatia (Vitis vinifera L.)

Croatia has rich grapevine genetic resources with more than 125 autochthonous varieties preserved. Coastal region of Croatia, Dalmatia, is well known for wine production based on autochthonous grapevine varieties. Nevertheless, only couple of these are widely cultivated and have greater economic importance. Grape seeds are sources of polyphenols which play an important role in organoleptic and nutritional value of grape and wine. Hence, the aim of this study was to evaluate the simple polyphenols from grape seeds in 20 rare autochthonous grapevine varieties.