Macrowine 2021
IVES 9 IVES Conference Series 9 From precursor identification to the study of the distribution of 3-methyl-2,4-nonanedione in red wines and spirits

From precursor identification to the study of the distribution of 3-methyl-2,4-nonanedione in red wines and spirits

Abstract

Prematurely aged red wines are marked by intense prune and fig aromatic nuances that dominate the complex bouquet that can be achieved through bottle aging. This oxidation off-flavor is, in part, caused by the presence of 3-methyl-2,4-nonanedione (MND).1 It is interesting to note that similar aromas are also detected in aged spirits. Despite its strong sensory impact in red wines, the precursors of this diketone were not well described.

So, first investigations were performed in order to quantify this compound in young and aged spirits in order to explain these nuances. In addition, determination of MND precursors in red wines as well as the study of oxidation mechanisms on their evolutions will improve our ability to understand its formation pathway in alcoholic beverages.

The first step of this work aimed at identifying a precursor of MND in grapes and wines. Based on the MND distribution in grapes, in young and old wines we hypothesized that ketols might be precursors of this diketone. We describe the chemical synthesis of 2-hydroxy-3-methylnonan-4-one (syn- and anti-ketol) as well as their identification in wines. MND and ketols were quantified by SPME-GC-MS (CI, MeOH) using SIS and MS/MS mode, respectively, in more than 150 Merlot and Cabernet Sauvignon wines from California, Bordeaux, and Switzerland. Oxidation experiments conducted in model wine and red wine demonstrated that ketols are able to produce MND. Based on these data, their role as MND precursor will be discussed. In addition, we also report first results concerning the origin of ketols in grapes and wines.

We also extended our investigations to spirits were old samples can develop similar dried plum aromas. We also report for the first time the distribution of MND in many spirits including Cognac, Armagnac, Brandy, Bourbon, Grappa, Rhum, Whisky. Highest levels were found in grappa (> 10 000 ng/L), exceeding its detection thresholds (100 ng/L). Sensory analysis experiments revealed that this compound contributes to the aroma of spirits. Assay of ketols in these samples revealed that they can be precursors of MND in spirits.

This project has improved our understanding of the formation and evolution of MND in wines, enabling more accurate predictions of the oxidative behavior and aging potential of red wines. In addition, we describe its first identification as well as its sensory impact in spirits

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Alexandre PONS

Université Bordeaux, ISVV, EA 4577, Unité de Recherche Œnologie, F-33882 Villenave d’Ornon, France, Seguin Moreau Cooperage, ZI Merpins, 16103 Cognac, France. Ana PETERSON, Université Bordeaux, ISVV, EA 4577, Unité de Recherche Œnologie, F-33882 Villenave d’Ornon, France. Fannie THIBAUD, Université Bordeaux, ISVV, EA 4577, Unité de Recherche Œnologie, F-33882 Villenave d’Ornon, France. Jean Charles MATHURIN, E. Rémy Martin & C°, Z.I, 16100 Merpins, France. Yannick LANDAIS, Université Bordeaux, ISM, CNRS UMR 5255, Talence, France. Philippe DARRIET, Université Bordeaux, ISVV, EA 4577, Unité de Recherche Œnologie, F-33882 Villenave d’Ornon, France. INRA, ISVV, USC 1366, Unité de Recherche Œnologie, F-33882 Villenave d’Ornon, France

Contact the author

Keywords

aging, red wines, oxidation, aroma, spirits, aroma precursor

Citation

Related articles…

MicrobiomeSupport: Towards coordinated microbiome R&I activities in the food system to support (EU and) international bioeconomy goals

Microbiomes have crucial roles in maintaining life on Earth, and their functions drive human, animal, plant and environmental health. The microbiome research landscape is developing rapidly and is performed in many different science fields using similar concepts but mostly one (eco)system at-a-time. Thus, we are only starting to unravel and understand the interconnectedness of microbiomes across the (eco)systems.

Training vineyards resilience to environmental variations by managing vine water use

The challenges of the century for viticulture relate to coping with climate change and the loss of biodiversity in a downturning socio-economic context. Now more than ever, the vine and wine industry needs to be resilient to maintain and ensure a future for its heritage. An innovation of capital importance, in line with recently published research, deals with developing new methods of training our inherited and newly planted vineyards to better withstand environmental variations such as drought and heatwaves but also unevenly distributed rains and temperatures.

VINIoT: Precision viticulture service for SMEs based on IoT sensors network

The main innovation in the VINIoT service is the joint use of two technologies that are currently used separately: vineyard monitoring using multispectral imaging and deployed terrain sensors. One part of the system is based on the development of artificial intelligence algorithms that are feed on the images of the multispectral camera and IoT sensors, high-level information on water stress, grape ripening status and the presence of diseases. In order to obtain algorithms to determine the state of ripening of the grapes and avoid losing information due to the diversity of the grape berries, it was decided to work along the first year 2020 at berry scale in the laboratory, during the second year at the cluster scale and on the last year at plot scale. Different varieties of white and red grapes were used; in the case of Galicia we worked with the white grape variety Treixadura and the red variety Mencía. During the 2020 and 2021 campaigns, multispectral images were taken in the visible and infrared range of: 1) sets of 100 grapes classifying them by means of densimetric baths, 2) individual bunches. The images taken with the laboratory analysis of the ripening stage were correlated. Technological maturity, pH, probable degree, malic acid content, tartaric acid content and parameters for assessing phenolic maturity, IPT, anthocyanin content were determined. It has been calculated for each single image the mean value of each spectral band (only taking into account the pixels of interest) and a correlation study of these values with laboratory data has been carried out. These studies are still provisional and it will be necessary to continue with them, jointly with the training of the machine learning algorithms. Processed data will allow to determine the sensitivity of the multispectral images and select bands of interest in maturation.

Artificial intelligence (AI)-based protein modeling for the interpretation of grapevine genetic variants

Genetic variants known to produce single residue missense mutations have been associated with phenotypic traits of commercial interest in grapevine. This is the case of the K284N substitution in VviDXS1 associated with muscat aroma, or the R197L in VviAGL11 causing stenospermocarpic seedless grapes. The impact of such mutations on protein structure, stability, dynamics, interactions, or functional mechanism can be studied by computational methods, including our pyDock scoring, previously developed. For this, knowledge on the 3D structure of the protein and its complexes with other proteins and biomolecules is required, but such knowledge is not available for virtually none of the proteins and complexes in grapevine.

The terroir of Carnuntum: investigation of the physiogeographic characteristics and interdisciplinary study of viticultural functions of the Carnuntum wine district, Austria

During a three-year period, the vineyards of the Carnuntum wine district are investigated for their terroir characteristics. The interdisciplinary study is aimed at the description of the physiogeographic