Macrowine 2021
IVES 9 IVES Conference Series 9 From precursor identification to the study of the distribution of 3-methyl-2,4-nonanedione in red wines and spirits

From precursor identification to the study of the distribution of 3-methyl-2,4-nonanedione in red wines and spirits

Abstract

Prematurely aged red wines are marked by intense prune and fig aromatic nuances that dominate the complex bouquet that can be achieved through bottle aging. This oxidation off-flavor is, in part, caused by the presence of 3-methyl-2,4-nonanedione (MND).1 It is interesting to note that similar aromas are also detected in aged spirits. Despite its strong sensory impact in red wines, the precursors of this diketone were not well described.

So, first investigations were performed in order to quantify this compound in young and aged spirits in order to explain these nuances. In addition, determination of MND precursors in red wines as well as the study of oxidation mechanisms on their evolutions will improve our ability to understand its formation pathway in alcoholic beverages.

The first step of this work aimed at identifying a precursor of MND in grapes and wines. Based on the MND distribution in grapes, in young and old wines we hypothesized that ketols might be precursors of this diketone. We describe the chemical synthesis of 2-hydroxy-3-methylnonan-4-one (syn- and anti-ketol) as well as their identification in wines. MND and ketols were quantified by SPME-GC-MS (CI, MeOH) using SIS and MS/MS mode, respectively, in more than 150 Merlot and Cabernet Sauvignon wines from California, Bordeaux, and Switzerland. Oxidation experiments conducted in model wine and red wine demonstrated that ketols are able to produce MND. Based on these data, their role as MND precursor will be discussed. In addition, we also report first results concerning the origin of ketols in grapes and wines.

We also extended our investigations to spirits were old samples can develop similar dried plum aromas. We also report for the first time the distribution of MND in many spirits including Cognac, Armagnac, Brandy, Bourbon, Grappa, Rhum, Whisky. Highest levels were found in grappa (> 10 000 ng/L), exceeding its detection thresholds (100 ng/L). Sensory analysis experiments revealed that this compound contributes to the aroma of spirits. Assay of ketols in these samples revealed that they can be precursors of MND in spirits.

This project has improved our understanding of the formation and evolution of MND in wines, enabling more accurate predictions of the oxidative behavior and aging potential of red wines. In addition, we describe its first identification as well as its sensory impact in spirits

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Alexandre PONS

Université Bordeaux, ISVV, EA 4577, Unité de Recherche Œnologie, F-33882 Villenave d’Ornon, France, Seguin Moreau Cooperage, ZI Merpins, 16103 Cognac, France. Ana PETERSON, Université Bordeaux, ISVV, EA 4577, Unité de Recherche Œnologie, F-33882 Villenave d’Ornon, France. Fannie THIBAUD, Université Bordeaux, ISVV, EA 4577, Unité de Recherche Œnologie, F-33882 Villenave d’Ornon, France. Jean Charles MATHURIN, E. Rémy Martin & C°, Z.I, 16100 Merpins, France. Yannick LANDAIS, Université Bordeaux, ISM, CNRS UMR 5255, Talence, France. Philippe DARRIET, Université Bordeaux, ISVV, EA 4577, Unité de Recherche Œnologie, F-33882 Villenave d’Ornon, France. INRA, ISVV, USC 1366, Unité de Recherche Œnologie, F-33882 Villenave d’Ornon, France

Contact the author

Keywords

aging, red wines, oxidation, aroma, spirits, aroma precursor

Citation

Related articles…

Sensory impact of sunburn in white wine and mitigation of climateinduced off-flavours by defoliation and application of reflecting particles on grapes

Climate change is a great environmental challenge with large impact on the Wine and sprakling wine industry. Heat waves and dryness cause frequent sunburn damage in white grapes

Environmental influence on grape phenolic and aromatic compounds in a Nebbiolo selection (Vitis vinifera L.)

Nebbiolo (Vitis vinifera L.) is one of the most important wine red cultivar of North-west Italy. A better understanding of the complex relations among grape aromatic and phenolic maturity and environmental factors may strongly contribute to the improvement of the quality of Nebbiolo wines.

Reconnaissance des vins de terroir par les consommateurs

Approaching the notion of terroir wines at the level of consumption poses a problem due to the absence of a regulatory definition of the term terroir, which is not taken up either at Community level or at national level (the Consumer Code in particular does not define not the land). However, whatever definition is adopted for the terroir, we can retain at the consumer level an identification of the terroir through the different geographical mentions appearing on the labels or on the shelves of the wine shelf.

Rootstock x environment interaction shapes shoot system phenotypic variation in grafted ‘Chambourcin’

Recent advances in phenomics and transcriptomics have the enhanced capacity for understanding how clonally propagated perennial crops like grapevines respond to their environments seasonally and over the course of multiple years. Because most grapevines are grafted, above-ground grapevine traits reflect scion genotype and its interaction with the local environment. In addition, traits expressed by the scion reflect rootstock genotype and how that rootstock is interacting with its environment seasonally and across years. To investigate rootstock x environment interaction on shoot systems in grafted grapevines we characterized comprehensive phenotypic variation in an experimental vineyard in Mount Vernon, Missouri, USA where the grapevine cultivar ‘Chambourcin’ is growing on its own roots and is grafted to three different rootstocks (‘1103P’, ‘3309C’, ‘SO4’).

Enological potential of autochtonous grape cultivars from Castilla y León (Spain) to elaborate sparkling wines: polyphenolic and biogenic amines and amino acid composition of base wines

In white wines, Verdejo wine stands out because of its high content in total amino acids. The total content in biogenic amines was low in all wines analyzed and putrescine was the predominant biogenic amine.