Macrowine 2021
IVES 9 IVES Conference Series 9 Preliminar study of adsorption of unstable white wine proteins using zirconium oxide supported on activated alumina by atomic layer deposition method

Preliminar study of adsorption of unstable white wine proteins using zirconium oxide supported on activated alumina by atomic layer deposition method

Abstract

A common problem in wineries is haze formation after bottling, mainly caused by unstable proteins present in white wine. The most used material to eliminate these proteins is bentonite. This material effectively removes proteins, but it is very harmful to white wine since it removes all kinds of proteins and other essential compounds from wine. Zirconium oxide (ZrO2) has been shown to remove the proteins responsible for haze selectively, but ZrO2 must be modified to increase the active surface area that adsorbs the proteins. This work aims to use zirconium oxide properties to produce a porous material coated on the surface by a new impregnation technology such as atomic layer deposition (ALD), which is highly active and allows the selective removal of haze-causing proteins from white wine. Zirconium oxide is deposited on 6 mm alumina spheres by the ALD method. As a result, two modified materials (MM) are obtained and are compared with pure zirconium (ZP) and the control wine. Batch and continuous experiments are carried out, subsequently analysed for total protein content by Bradford and polysaccharide and protein content by HPLC. Preliminary results indicate that the spheres remove 10-20% of total proteins from white wine, where the content of proteins <25 kDa decreases and proteins of higher molecular weight are not affected. Pure zirconium in 3 mm discs removes twice as much protein as MM. However, zirconium content in MM is in the order of ~1% and has a lower surface area than ZP is 100% zirconium, but it has a higher active surface area. The polysaccharide content is slightly reduced, but pure zirconium removes more than MM. Therefore, we can conclude that there is a selective reduction of proteins, but this is not enough; this may be due to two aspects: the surface area of pure zirconium is higher than the modified material, and the content is also lower. Therefore, to improve the protein removal with the modified materials, it is proposed to increase the active surface area reducing the spheres’ size from the original 6 mm to 2-4 mm.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Daniela Silva

Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Chile ,Fernando Salazar, Laboratorio de Fermentaciones Industriales, Escuela de Alimentos, Facultad de Ciencias Agronómica y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Chile Francisco López, Departament d’Enginyeria Química, Facultat d’Enologia, Universitat Rovira i Virgili, España Néstor Escalona, Departamento de Ingeniería Química y Bioprocesos, Pontificia Universidad Católica de Chile, Chile José Pérez-Correa, Departamento de Ingeniería Química y Bioprocesos, Pontificia Universidad Católica de Chile, Chile

Contact the author

Keywords

haze, unstable proteins, protein stabilization, protein removal, zirconium oxide

Citation

Related articles…

Automated red microvinification (1kg) adapted to the needs of varietal innovation

The creation of disease-resistant varieties adapted to climate change is a key challenge for the future of the wine industry. At present, the selection of these new varieties is essentially based on screening for genetic markers of resistance and agronomic criteria, due to the small number of vines available per genotype. Integrating screening for oenological criteria into the early stages of selection would speed up this process.

Feasibility of pre-fermentative oenological tannins addition to enhance volatile composition and aroma perception in white wines

Oenological tannins (OETs) are an alternative to sulphur dioxide due to their antioxidant and antioxidase properties in the early phase of winemaking [1,2].

Integrated sustainability assessment in viticulture: An indicator-based approach applied to organic vineyards

Over the past two decades, sustainable vineyard management practices have become increasingly important as the wine industry is facing critical challenges, including climate change, biodiversity loss, and soil degradation.

METHYL SALICYLATE, A COMPOUND INVOLVED IN BORDEAUX RED WINES PRODUCED WITHOUT SULFITES ADDITION

Sulfur dioxide (SO₂) is the most commonly used additive during winemaking to protect wine from oxidation and from microorganisms. Thus, since the 18th century, SO₂ was almost systematically present in wines. Recently, wines produced without any addition of SO₂ during all the winemaking process including bottling became more and more popular for consumers. A recent study dedicated to sensory characterization of Bordeaux red wines produced without added SO₂, revealed that such wines were perceived differently from similar wines produced with using SO₂ and were characterized by specific fruity aromas and coolness1,2.

Regenerative agricultural winegrowing systems play a role in refining the expression of terroir in the pacific coast region of United States and Canada

By definition, Regenerative Agricultural Systems seek to promote soil and plant health by using photosynthesis for the removal and retention of atmospheric carbon dioxide into stable soil carbon.