Macrowine 2021
IVES 9 IVES Conference Series 9 Preliminar study of adsorption of unstable white wine proteins using zirconium oxide supported on activated alumina by atomic layer deposition method

Preliminar study of adsorption of unstable white wine proteins using zirconium oxide supported on activated alumina by atomic layer deposition method

Abstract

A common problem in wineries is haze formation after bottling, mainly caused by unstable proteins present in white wine. The most used material to eliminate these proteins is bentonite. This material effectively removes proteins, but it is very harmful to white wine since it removes all kinds of proteins and other essential compounds from wine. Zirconium oxide (ZrO2) has been shown to remove the proteins responsible for haze selectively, but ZrO2 must be modified to increase the active surface area that adsorbs the proteins. This work aims to use zirconium oxide properties to produce a porous material coated on the surface by a new impregnation technology such as atomic layer deposition (ALD), which is highly active and allows the selective removal of haze-causing proteins from white wine. Zirconium oxide is deposited on 6 mm alumina spheres by the ALD method. As a result, two modified materials (MM) are obtained and are compared with pure zirconium (ZP) and the control wine. Batch and continuous experiments are carried out, subsequently analysed for total protein content by Bradford and polysaccharide and protein content by HPLC. Preliminary results indicate that the spheres remove 10-20% of total proteins from white wine, where the content of proteins <25 kDa decreases and proteins of higher molecular weight are not affected. Pure zirconium in 3 mm discs removes twice as much protein as MM. However, zirconium content in MM is in the order of ~1% and has a lower surface area than ZP is 100% zirconium, but it has a higher active surface area. The polysaccharide content is slightly reduced, but pure zirconium removes more than MM. Therefore, we can conclude that there is a selective reduction of proteins, but this is not enough; this may be due to two aspects: the surface area of pure zirconium is higher than the modified material, and the content is also lower. Therefore, to improve the protein removal with the modified materials, it is proposed to increase the active surface area reducing the spheres’ size from the original 6 mm to 2-4 mm.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Daniela Silva

Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Chile ,Fernando Salazar, Laboratorio de Fermentaciones Industriales, Escuela de Alimentos, Facultad de Ciencias Agronómica y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Chile Francisco López, Departament d’Enginyeria Química, Facultat d’Enologia, Universitat Rovira i Virgili, España Néstor Escalona, Departamento de Ingeniería Química y Bioprocesos, Pontificia Universidad Católica de Chile, Chile José Pérez-Correa, Departamento de Ingeniería Química y Bioprocesos, Pontificia Universidad Católica de Chile, Chile

Contact the author

Keywords

haze, unstable proteins, protein stabilization, protein removal, zirconium oxide

Citation

Related articles…

Phenotypical impact of a floral somatic mutation in the cultivar Listán Prieto

The accession Criolla Chica Nº2 (CCN2) is catalogued as a floral mutation of cultivar Criolla Chica (synonym for cv. Listán Prieto). Contrary to what is observed in hermaphrodite-cultivated varieties like Criolla Chica, CCN2 exhibits a prevalence of masculinized flowers. Aiming to study the incidence and phenotypical implications of this mutation, CCN2 plants were deeply studied using Criolla Chica ‘Ballista’ (CCBA) as control plants. For each CCN2 plant, two inflorescences per shoot were sampled and segmented into proximal, mid and distal positions, relative to the pedicel. Flowers were observed through magnifying lens and classified according to OIV151 descriptor.

Towards microbiota-based disease management: analysis of grapevine microbiota in plots with contrasted levels of downy mildew infection

Vineyards harbor a myriad of microorganisms that interact with each other and with the grapevines. Some microorganisms are plant pathogens, such as the oomycete Plasmopara viticola that causes grapevine downy mildew. Others, such as plant growth promoting bacteria and disease biocontrol agents, have a positive influence on vine health. The present study aims to (1) investigate whether vine-based culture media increase the cultivability of the grapevine microbiota, in comparison to standard culture media and (2) identify and isolate bacterial taxa naturally present in grapevine leaves and significantly more abundant in plots showing low susceptibility to downy mildew.

Physical-chemical characterization of Moscatel de Setúbal fortified wines from different vintages

Moscatel de Setúbal is a Portuguese fortified wine with Protected Designation of Origin (PDO Setúbal), made from Moscatel de Setúbal grape variety (Muscat of Alexandria) [1].

Phenolic composition of Tempranillo Blanco grapes changes after foliar application of urea

Our research aimed to determine the effect and efficiency of foliar application of urea on the phenolic composition of Tempranillo Blanco grapes. The field experiment was carried out in 2019 and 2020 seasons and the plot was located in D.O.Ca Rioja (North of Spain). The vineyard was Vitis vinifera L. Tempranillo Blanco and grafted on Richter-110 rootstock. The treatments were control (C), whose plants were sprayed with water and three doses of urea: plants were sprayed with urea 3 kg N/ha (U3), 6 kg N/ha (U6) and 9 kg N/ha (U9). The applications were performed in two phenological stages, pre-veraison (Pre) and veraison (Ver). Also, each of the treatments was repeated one week later. Control and treatments were performed in triplicate and arranged in a randomised block design. Grapes were harvested at optimum ripening stage. High-performance liquid chromatography was used to analyse the phenolic composition of the grapes. Finally, the results obtained from the analytical determinations – flavonols, flavanols and non-flavonoid (hydroxybenzoic acids, hydroxycinnamic acids and stilbenes) – were studied statistically by analysis of variance. The results showed that, in 2019, U6-Pre and U9-Pre treatments increased the hydroxybenzoic acid content in grapes, and also all foliar treatments applied at Pre enhanced the stilbene concentration. Moreover, U3-Ver was the only treatment that rose flavonol and stilbene contents in the Tempranillo Blanco grapes. In 2020, all treatments applied at Pre enhanced the flavonol concentration in grapes. Furthermore, U3-Pre and U9-Pre treatments increased stilbene content in grapes. Nevertheless, the hydroxybenzoic acid content was improved by U6-Ver and U9-Ver and besides, hydroxycinnamic acid concentration in grapes was increased by all treatments applied at Ver. In conclusion, the lower and highest dose of urea (U3 and U9), applied at pre-veraison, were the best treatments to improve the Tempranillo Blanco grape phenolic composition.

Effect of simulated shipping conditions on colour and SO2 evolution in soave wines

The shelf life of food is defined as the period in which the product will remain safe, is certain to retain desired sensory, chemical, physical, and microbiological characteristics