Macrowine 2021
IVES 9 IVES Conference Series 9 Preliminar study of adsorption of unstable white wine proteins using zirconium oxide supported on activated alumina by atomic layer deposition method

Preliminar study of adsorption of unstable white wine proteins using zirconium oxide supported on activated alumina by atomic layer deposition method

Abstract

A common problem in wineries is haze formation after bottling, mainly caused by unstable proteins present in white wine. The most used material to eliminate these proteins is bentonite. This material effectively removes proteins, but it is very harmful to white wine since it removes all kinds of proteins and other essential compounds from wine. Zirconium oxide (ZrO2) has been shown to remove the proteins responsible for haze selectively, but ZrO2 must be modified to increase the active surface area that adsorbs the proteins. This work aims to use zirconium oxide properties to produce a porous material coated on the surface by a new impregnation technology such as atomic layer deposition (ALD), which is highly active and allows the selective removal of haze-causing proteins from white wine. Zirconium oxide is deposited on 6 mm alumina spheres by the ALD method. As a result, two modified materials (MM) are obtained and are compared with pure zirconium (ZP) and the control wine. Batch and continuous experiments are carried out, subsequently analysed for total protein content by Bradford and polysaccharide and protein content by HPLC. Preliminary results indicate that the spheres remove 10-20% of total proteins from white wine, where the content of proteins <25 kDa decreases and proteins of higher molecular weight are not affected. Pure zirconium in 3 mm discs removes twice as much protein as MM. However, zirconium content in MM is in the order of ~1% and has a lower surface area than ZP is 100% zirconium, but it has a higher active surface area. The polysaccharide content is slightly reduced, but pure zirconium removes more than MM. Therefore, we can conclude that there is a selective reduction of proteins, but this is not enough; this may be due to two aspects: the surface area of pure zirconium is higher than the modified material, and the content is also lower. Therefore, to improve the protein removal with the modified materials, it is proposed to increase the active surface area reducing the spheres’ size from the original 6 mm to 2-4 mm.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Daniela Silva

Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Chile ,Fernando Salazar, Laboratorio de Fermentaciones Industriales, Escuela de Alimentos, Facultad de Ciencias Agronómica y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Chile Francisco López, Departament d’Enginyeria Química, Facultat d’Enologia, Universitat Rovira i Virgili, España Néstor Escalona, Departamento de Ingeniería Química y Bioprocesos, Pontificia Universidad Católica de Chile, Chile José Pérez-Correa, Departamento de Ingeniería Química y Bioprocesos, Pontificia Universidad Católica de Chile, Chile

Contact the author

Keywords

haze, unstable proteins, protein stabilization, protein removal, zirconium oxide

Citation

Related articles…

Impact of soil characteristics on grape composition of Tempranillo variety under different weather conditions in Rioja DOCa (Spain)

Aims: The objective of this research was to analyse the spatial and temporal variability of vine phenology of the Tempranillo variety in the Toro Designation of Origen (DO) related to climatic conditions at present and under future climate change scenarios.

The use of remote sensing in South-African terroir research

The diversity of soil types in the Western Cape of South Africa leads to high levels of within-vineyard variability. Multispectral remote sensing has received a lot of attention recently in the South-African wine industry in an attempt to identify and deal with this variability.

Exploiting the diversity in spent yeast for its valorisation towards producing yeast-derived processing aids

In view of sustainability and zero-waste initiatives, the valorisation of sidestreams is a key emerging topic in the wine industry.

Development of a LC-FTMS method to quantify natural sweeteners in red wines

The quality of a wine is largely related to the balance between its sourness, bitterness and sweetness. Recently, molecules coming from grapes have been showed to notably contribute to sweet taste of dry wines. To study the viticultural and oenological parameters likely to affect their concentration, their quantification appears of high interest and subsequently requires powerful analytical techniques. Therefore, a new method using liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS) was developed and validated to quantify epi-DPA-3′-O-β-glucopyranoside acid (epi-DPA-G) and astilbin, sweet molecules identified in wine. Three gradients were tested on five different C18 columns (Hypersil Gold, HSS T3, BEH, Syncronis and Kinetex).

The concept of « terroir »: what does that mean ? What is it useful for ? French young adults perception

Far from complicated discussions on the relevant way to define « terroir », this article deals with the social perception that French young adults (aged from 18 to 30) have of this concept and the way it can help them to become wine consumers.