Macrowine 2021
IVES 9 IVES Conference Series 9 Preliminar study of adsorption of unstable white wine proteins using zirconium oxide supported on activated alumina by atomic layer deposition method

Preliminar study of adsorption of unstable white wine proteins using zirconium oxide supported on activated alumina by atomic layer deposition method

Abstract

A common problem in wineries is haze formation after bottling, mainly caused by unstable proteins present in white wine. The most used material to eliminate these proteins is bentonite. This material effectively removes proteins, but it is very harmful to white wine since it removes all kinds of proteins and other essential compounds from wine. Zirconium oxide (ZrO2) has been shown to remove the proteins responsible for haze selectively, but ZrO2 must be modified to increase the active surface area that adsorbs the proteins. This work aims to use zirconium oxide properties to produce a porous material coated on the surface by a new impregnation technology such as atomic layer deposition (ALD), which is highly active and allows the selective removal of haze-causing proteins from white wine. Zirconium oxide is deposited on 6 mm alumina spheres by the ALD method. As a result, two modified materials (MM) are obtained and are compared with pure zirconium (ZP) and the control wine. Batch and continuous experiments are carried out, subsequently analysed for total protein content by Bradford and polysaccharide and protein content by HPLC. Preliminary results indicate that the spheres remove 10-20% of total proteins from white wine, where the content of proteins <25 kDa decreases and proteins of higher molecular weight are not affected. Pure zirconium in 3 mm discs removes twice as much protein as MM. However, zirconium content in MM is in the order of ~1% and has a lower surface area than ZP is 100% zirconium, but it has a higher active surface area. The polysaccharide content is slightly reduced, but pure zirconium removes more than MM. Therefore, we can conclude that there is a selective reduction of proteins, but this is not enough; this may be due to two aspects: the surface area of pure zirconium is higher than the modified material, and the content is also lower. Therefore, to improve the protein removal with the modified materials, it is proposed to increase the active surface area reducing the spheres’ size from the original 6 mm to 2-4 mm.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Daniela Silva

Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Chile ,Fernando Salazar, Laboratorio de Fermentaciones Industriales, Escuela de Alimentos, Facultad de Ciencias Agronómica y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Chile Francisco López, Departament d’Enginyeria Química, Facultat d’Enologia, Universitat Rovira i Virgili, España Néstor Escalona, Departamento de Ingeniería Química y Bioprocesos, Pontificia Universidad Católica de Chile, Chile José Pérez-Correa, Departamento de Ingeniería Química y Bioprocesos, Pontificia Universidad Católica de Chile, Chile

Contact the author

Keywords

haze, unstable proteins, protein stabilization, protein removal, zirconium oxide

Citation

Related articles…

Diversity of leaf functioning under water deficit in a large grapevine panel: high throughput phenotyping and genetic analyses

Water resource is a major limiting factor impacted by climate change that threatens grapevine production and quality. Understanding the ecophysiological mechanisms involved in the response to water deficit is crucial to select new varieties more drought tolerant. A major bottleneck that hampers such advances is the lack of methods for measuring fine functioning traits on thousands of plants as required for genetic analyses. This study aimed at investigating how water deficit affects the trade-off between carbon gains and water losses in a large panel representative of the Vitis vinifera genetic diversity. 250 genotypes were grown under 3 watering scenarios (well-watered, moderate and severe water deficit) in a high-throughput phenotyping platform.

Quantitative assessment of must composition using benchtop NMR spectroscopy: comparative evaluation with FTIR and validation by reference

The foundation of wine production lies in the use of high-quality grapes. To produce wines that meet the highest standards, a fast and reliable analytical assessment of grape quality is essential. Many wineries currently employ Fourier-Transform Middle-Infrared Spectroscopy (FTIR) for this purpose.

Extraction-modelling approach demonstrates grapevine rooting patterns varies significantly as a result of contrasting ground management and growing environment in cover cropped vineyards

The use of cover crops in viticulture has increased in recent decades as growers seek to reduce herbicide use, improve soil organic matter and biodiversity, and minimize soil-related agronomic issues such as compaction and erosion.

High-throughput screening of physical-mechanical berry skin traits facilitates targeted selection of breeding material with resistance to Botrytis bunch rot and grape sunburn

The ongoing climate change implies an increasing mean air temperature, which is signified by weather extremes or sudden changes between drought and local heavy rainfalls. These changing conditions are especially challenging for the established grapevine varieties growing under cool climate conditions due to an increased risk for fungal diseases like downy mildew (DM) and Botrytis bunch rot (BBR) as well as for grape sunburn. To meet that demand, the scope of most grapevine breeding programs is the selection of mildew fungus-resistant and climatic adapted grapevines with balanced, healthy yield and outstanding wine quality.

Impact of tomato black ring virus (TBRV) on quantitative and qualitative feature of Vitis vinifera L. Cv. Merlot and Cabernet franc

Fifteen nepoviruses are able to induce fanleaf degeneration in grapes. Grapevine fanleaf virus (GFLV) is the main causal agent of this disease