Macrowine 2021
IVES 9 IVES Conference Series 9 Preliminar study of adsorption of unstable white wine proteins using zirconium oxide supported on activated alumina by atomic layer deposition method

Preliminar study of adsorption of unstable white wine proteins using zirconium oxide supported on activated alumina by atomic layer deposition method

Abstract

A common problem in wineries is haze formation after bottling, mainly caused by unstable proteins present in white wine. The most used material to eliminate these proteins is bentonite. This material effectively removes proteins, but it is very harmful to white wine since it removes all kinds of proteins and other essential compounds from wine. Zirconium oxide (ZrO2) has been shown to remove the proteins responsible for haze selectively, but ZrO2 must be modified to increase the active surface area that adsorbs the proteins. This work aims to use zirconium oxide properties to produce a porous material coated on the surface by a new impregnation technology such as atomic layer deposition (ALD), which is highly active and allows the selective removal of haze-causing proteins from white wine. Zirconium oxide is deposited on 6 mm alumina spheres by the ALD method. As a result, two modified materials (MM) are obtained and are compared with pure zirconium (ZP) and the control wine. Batch and continuous experiments are carried out, subsequently analysed for total protein content by Bradford and polysaccharide and protein content by HPLC. Preliminary results indicate that the spheres remove 10-20% of total proteins from white wine, where the content of proteins <25 kDa decreases and proteins of higher molecular weight are not affected. Pure zirconium in 3 mm discs removes twice as much protein as MM. However, zirconium content in MM is in the order of ~1% and has a lower surface area than ZP is 100% zirconium, but it has a higher active surface area. The polysaccharide content is slightly reduced, but pure zirconium removes more than MM. Therefore, we can conclude that there is a selective reduction of proteins, but this is not enough; this may be due to two aspects: the surface area of pure zirconium is higher than the modified material, and the content is also lower. Therefore, to improve the protein removal with the modified materials, it is proposed to increase the active surface area reducing the spheres’ size from the original 6 mm to 2-4 mm.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Daniela Silva

Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Chile ,Fernando Salazar, Laboratorio de Fermentaciones Industriales, Escuela de Alimentos, Facultad de Ciencias Agronómica y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Chile Francisco López, Departament d’Enginyeria Química, Facultat d’Enologia, Universitat Rovira i Virgili, España Néstor Escalona, Departamento de Ingeniería Química y Bioprocesos, Pontificia Universidad Católica de Chile, Chile José Pérez-Correa, Departamento de Ingeniería Química y Bioprocesos, Pontificia Universidad Católica de Chile, Chile

Contact the author

Keywords

haze, unstable proteins, protein stabilization, protein removal, zirconium oxide

Citation

Related articles…

Precision viticultural strategy for managing intra-vineyard variability in grape aroma using UAV-based vigour indices

In several cultivars, such as Gewürztraminer and Riesling, grape and wine aromas are determined by volatile terpenoids.

A vine physiology-based terroir study in the AOC-Lavaux region in Switzerland

Understanding how different pedoclimatic conditions interact with vine and berry physiology, and subsequently impact wine quality, is paramount for an good valorization of viticultural terroirs and can help to optimize mitigation strategies in the face of global warming

Characterization of spoilage yeasts from Malbec grapes from San Rafael wine region (Argentina)

The yeast ecosystem in grape musts is quite broad and depends on the region and the health of the grapes. Within this, there are yeasts that can generate fermentative deviations and/or cause defects in the wine. It is very important to address this issue because there are significant economic losses in the wine industry when the fermentation process and/or the organoleptic characteristics of the wine are negatively affected, even more today since climate change has a marked effect on the composition of this ecosystem. The aim of this work is to characterize the behavior regarding detrimental oenological features of potential spoilage yeasts isolated from viticultural environments.

Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

San Joaquin Valley accounts for 40% of wine grape acreage and produces 70% of wine grape in California. Fruit quality is one of most important factors which impact the economical sustainability of farming wine grapes in this region. Due to the recent drought and expected labor cost increase, the wine industry is thrilled to understand how to improve fruit quality while maintaining the yield with less water and labor input. The present study aims to study the interactive effects of mechanical leafing and deficit irrigation on yield and berry compositions of Cabernet Sauvignon grown in warm climate of California.

Using GIS to assess the terroir potential of an Oregon viticultural region

Deciding to grow grapes in Oregon is complex issue due to our diverse geography, climate, and relatively short history of grape growing. For any potential grape grower, vineyard site selection is the single most important decision they will face.