Macrowine 2021
IVES 9 IVES Conference Series 9 Anthocyanins in tannat wines rapidly evolve toward unidentified red-coloured pigments

Anthocyanins in tannat wines rapidly evolve toward unidentified red-coloured pigments

Abstract

AIM: To assess the relationship between the reported low-stability of Tannat colour during wine storage and its pigment composition and evolution

METHODS: Twenty wines were elaborated under experimental conditions over two vintages, 2015 and 2016, eight corresponding to Tannat, and six to Syrah and Marselan. Wines were stored in darkness under cellar temperature conditions. Anthocyanins and tannins were quantified by spectrophotometric methods as well as by HPLC-DAD-ESI-MSn. Analysis were made three months after the end of winemaking, and twelve and twenty-four months later.

RESULTS: At three months, the pigment content determined by HPLC (spectrophotometer) ranged between 190-240 mg/L (370-665 mg/L) in Tannat, 200-320 mg/L (420-470) in Marselan and 100-305 (220-340) in Syrah. Colour intensity was between 17-28 AU in Tannat, 15-17 in Marselan and 10-16 in Syrah. From the second analytical date on, Tannat wines registered the lowest HPLC/spectrophotometer anthocyanin quotient, tendency increasing with wine age. Besides, Tannat wines presented much higher decreases of the HPLC anthocyanin content between analytical dates than the observed in Marselan and Syrah. This was independent from the type of pigment considered. Moreover, the unresolved HPLC broad peak was also of a higher relative magnitude in Tannat wines. This could not be explained by the tannin contents or pH measured in the wines. Spectrophotometric anthocyanin results did not show such differences among cultivars, neither in the proportion of SO2 bleachable pigments. Tannat wines showed as well the highest colour intensity decreases through time.

CONCLUSIONS

The result suggests that in Tannat wines, anthocyanins may evolve rapidly towards polymeric pigments that would still have red-bluish hues but would be less stable. These findings could be behind the low colour stability reported in literature for Tannat wines, and could be a starting point for future research.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Guzmán Favre

Faculty of Agronomy, Universidad de la República, Av. Garzón 780. C.P., 12900 Montevideo, Uruguay ,Sergio, GÓMEZ-ALONSO, Regional Institute of Applied Scientific Research (IRICA), University of Castilla-La Mancha, Avda. Camilo José Cela S / N, 13071 Ciudad Real, Spain. José, PÉREZ-NAVARRO, Regional Institute of Applied Scientific Research (IRICA), University of Castilla-La Mancha, Avda. Camilo José Cela S / N, 13071 Ciudad Real, Spain. Diego, PICCARDO, Faculty of Agronomy, Universidad de la República, Av. Garzón 780. C.P., 12900 Montevideo, Uruguay  Gustavo, GONZÁLEZ-NEVES, Faculty of Agronomy, Universidad de la República, Av. Garzón 780. C.P., 12900 Montevideo, Uruguay

Contact the author

Keywords

colour stability and evolution, derived pigments, tannat, syrah, marselan

Citation

Related articles…

Sensory impact of sunburn in white wine and mitigation of climateinduced off-flavours by defoliation and application of reflecting particles on grapes

Climate change is a great environmental challenge with large impact on the Wine and sprakling wine industry. Heat waves and dryness cause frequent sunburn damage in white grapes

New tool to evaluate color modifications during oxygen consumption in white and red wines

Measuring the effect of oxygen consumption on the color of wines as the level of dissolved oxygen decreases over time is very useful to know how much oxygen a wine can consume without significantly altering its color. The changes produced in wine after being exposed to high oxygen concentrations have been studied by different authors, but in all cases the wine has been analyzed once the oxygen consumption process has been completed. This work presents the results obtained with the use of an equipment designed and made to measure simultaneously the level of dissolved oxygen and the spectrum of the wine, during the oxygen consumption process from saturation levels with air to very low levels, which indicate the total consumption of the dosed oxygen[1,2].

Separation and elucidation of ethylidene-bridged catechin oligomers using preparative-HPLC and NMR

During wine aging, small amounts of oxygen are absorbed and initiate a cascade of oxidation reactions. These aging reactions create many products including ethylidene-bridged oligomers and polymers of endogenous polyphenols, like flavan-3ols.

Investigating water stress-related seasonal and spatial patterns and the possible links with juice and wine compositional parameters

The mapping of spatial variability in vineyards offers the potential to implement zonal management strategies with the aim to optimize economic benefits and increase sustainability by managing natural resources, such as water used for irrigation, more optimally. This study characterized the (natural) variability in plant water status in a commercial Cabernet Sauvignon block, using remote sensing techniques, and identified the impact of this variability on the yield, and juice and wine composition. From the field data collected over two growing seasons, we demonstrated that remote sensing techniques are a practical and powerful tool for mapping spatial variability within vineyard blocks.

Characterization of vineyard sites for quality wine production using meteorological, soil chemical and physical data

The quality of grapevines measured by yield and must density in the northern part of Europe -conditions can be characterized as a type of “cool climate” – vary strongly from year to year and from one production site to another, i.e. différences in must densities can range from 30 to 50 °Oe. An explanation may be changes of weather conditions during critical developmental stages of the grapevines (2, 3, 5). These can be categorized as “macro climatic” influences.