Macrowine 2021
IVES 9 IVES Conference Series 9 Anthocyanins in tannat wines rapidly evolve toward unidentified red-coloured pigments

Anthocyanins in tannat wines rapidly evolve toward unidentified red-coloured pigments

Abstract

AIM: To assess the relationship between the reported low-stability of Tannat colour during wine storage and its pigment composition and evolution

METHODS: Twenty wines were elaborated under experimental conditions over two vintages, 2015 and 2016, eight corresponding to Tannat, and six to Syrah and Marselan. Wines were stored in darkness under cellar temperature conditions. Anthocyanins and tannins were quantified by spectrophotometric methods as well as by HPLC-DAD-ESI-MSn. Analysis were made three months after the end of winemaking, and twelve and twenty-four months later.

RESULTS: At three months, the pigment content determined by HPLC (spectrophotometer) ranged between 190-240 mg/L (370-665 mg/L) in Tannat, 200-320 mg/L (420-470) in Marselan and 100-305 (220-340) in Syrah. Colour intensity was between 17-28 AU in Tannat, 15-17 in Marselan and 10-16 in Syrah. From the second analytical date on, Tannat wines registered the lowest HPLC/spectrophotometer anthocyanin quotient, tendency increasing with wine age. Besides, Tannat wines presented much higher decreases of the HPLC anthocyanin content between analytical dates than the observed in Marselan and Syrah. This was independent from the type of pigment considered. Moreover, the unresolved HPLC broad peak was also of a higher relative magnitude in Tannat wines. This could not be explained by the tannin contents or pH measured in the wines. Spectrophotometric anthocyanin results did not show such differences among cultivars, neither in the proportion of SO2 bleachable pigments. Tannat wines showed as well the highest colour intensity decreases through time.

CONCLUSIONS

The result suggests that in Tannat wines, anthocyanins may evolve rapidly towards polymeric pigments that would still have red-bluish hues but would be less stable. These findings could be behind the low colour stability reported in literature for Tannat wines, and could be a starting point for future research.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Guzmán Favre

Faculty of Agronomy, Universidad de la República, Av. Garzón 780. C.P., 12900 Montevideo, Uruguay ,Sergio, GÓMEZ-ALONSO, Regional Institute of Applied Scientific Research (IRICA), University of Castilla-La Mancha, Avda. Camilo José Cela S / N, 13071 Ciudad Real, Spain. José, PÉREZ-NAVARRO, Regional Institute of Applied Scientific Research (IRICA), University of Castilla-La Mancha, Avda. Camilo José Cela S / N, 13071 Ciudad Real, Spain. Diego, PICCARDO, Faculty of Agronomy, Universidad de la República, Av. Garzón 780. C.P., 12900 Montevideo, Uruguay  Gustavo, GONZÁLEZ-NEVES, Faculty of Agronomy, Universidad de la República, Av. Garzón 780. C.P., 12900 Montevideo, Uruguay

Contact the author

Keywords

colour stability and evolution, derived pigments, tannat, syrah, marselan

Citation

Related articles…

Using multifactorial analysis to evaluate the contribution of terroir components to the oenological potential of grapes at harvest

The oenological potential of grapes at harvest depends on a combination of the major components of Terroir: the climate, the soil, the plant material, the training system and the crop management.

Exploring the behavior of alternatives to montmorillonite clays in white wine protein stabilization

Visual clarity in wines is crucial for commercial purposes [1]. Potential protein haze in white wines remains a constant concern in wineries, commonly addressed using bentonite [2].

The capacity of spectrofluorometric fingerprints to discern changes of wine composition: applications in classifying wine additives and tracking red wine maturation and ageing

Fluorescence spectroscopy combined with chemometrics has shown advantages in wine analysis due to being rapid, sensitive, and selective to fluorescent molecules. Especially due to the abundant phenolic compounds [1], the molecular fingerprints afforded by fluorescence spectroscopy can potentially be used to discern and track the change of wine composition, with two innovative investigations having been implemented.

Influence of coinoculation of L. plantarum and O. oeni on the color and composition of Tempranillo wines

AIM: The aim of this research was to determine the influence of performing malolactic fermentation (MLF) of Tempranillo wines by coinoculation with Lactobacillus plantarum or Oenococcus oeni and Saccharomycescerevisiae on the composition and color of the final wines in comparison with sequential inoculation with Oenococcus oeni and spontaneous MLF. METHODS: Around 1500 Kg of Tempranillo grapes from Pagos de Anguix winery (Anguix, AOC Ribera de Duero, Spain) were harvested at the optimal maturity

YEAST LEES OBTAINED AFTER STARMERELLA BACILLARIS FERMENTATION AS A SOURCE OF POTENTIAL COMPOUNDS TO IMPROVE SUSTAINABILITY IN WINE- MAKING

The yeast residue left over after wine-making, known as wine yeast lees, is a source of various compounds that are of interest for wine and food industry. In winemaking, yeast-derived glycocompounds and proteins represent an example of circular economy approach since they have been proven to reduce the need for bentonite and animal-based fining agents. This leads to a reduced environmental impact in the stabilization and fining processes in winemaking. (de Iseppi et al., 2020, 2021).