Macrowine 2021
IVES 9 IVES Conference Series 9 Anthocyanins in tannat wines rapidly evolve toward unidentified red-coloured pigments

Anthocyanins in tannat wines rapidly evolve toward unidentified red-coloured pigments

Abstract

AIM: To assess the relationship between the reported low-stability of Tannat colour during wine storage and its pigment composition and evolution

METHODS: Twenty wines were elaborated under experimental conditions over two vintages, 2015 and 2016, eight corresponding to Tannat, and six to Syrah and Marselan. Wines were stored in darkness under cellar temperature conditions. Anthocyanins and tannins were quantified by spectrophotometric methods as well as by HPLC-DAD-ESI-MSn. Analysis were made three months after the end of winemaking, and twelve and twenty-four months later.

RESULTS: At three months, the pigment content determined by HPLC (spectrophotometer) ranged between 190-240 mg/L (370-665 mg/L) in Tannat, 200-320 mg/L (420-470) in Marselan and 100-305 (220-340) in Syrah. Colour intensity was between 17-28 AU in Tannat, 15-17 in Marselan and 10-16 in Syrah. From the second analytical date on, Tannat wines registered the lowest HPLC/spectrophotometer anthocyanin quotient, tendency increasing with wine age. Besides, Tannat wines presented much higher decreases of the HPLC anthocyanin content between analytical dates than the observed in Marselan and Syrah. This was independent from the type of pigment considered. Moreover, the unresolved HPLC broad peak was also of a higher relative magnitude in Tannat wines. This could not be explained by the tannin contents or pH measured in the wines. Spectrophotometric anthocyanin results did not show such differences among cultivars, neither in the proportion of SO2 bleachable pigments. Tannat wines showed as well the highest colour intensity decreases through time.

CONCLUSIONS

The result suggests that in Tannat wines, anthocyanins may evolve rapidly towards polymeric pigments that would still have red-bluish hues but would be less stable. These findings could be behind the low colour stability reported in literature for Tannat wines, and could be a starting point for future research.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Guzmán Favre

Faculty of Agronomy, Universidad de la República, Av. Garzón 780. C.P., 12900 Montevideo, Uruguay ,Sergio, GÓMEZ-ALONSO, Regional Institute of Applied Scientific Research (IRICA), University of Castilla-La Mancha, Avda. Camilo José Cela S / N, 13071 Ciudad Real, Spain. José, PÉREZ-NAVARRO, Regional Institute of Applied Scientific Research (IRICA), University of Castilla-La Mancha, Avda. Camilo José Cela S / N, 13071 Ciudad Real, Spain. Diego, PICCARDO, Faculty of Agronomy, Universidad de la República, Av. Garzón 780. C.P., 12900 Montevideo, Uruguay  Gustavo, GONZÁLEZ-NEVES, Faculty of Agronomy, Universidad de la República, Av. Garzón 780. C.P., 12900 Montevideo, Uruguay

Contact the author

Keywords

colour stability and evolution, derived pigments, tannat, syrah, marselan

Citation

Related articles…

Macromolecular characterization of disease resistant red wine varieties (PIWI)

Pilzwiderstandsfähige (PIWI) are disease resistant Vitis vinifera interspecific hybrid varieties that are receiving increasing attention for ability to ripen in cool climates and their resistance to grapevine fungal diseases. Wines produced from these varieties have not been characterized, especially regarding their macromolecular composition. This study characterised and quantified colloid-forming molecules (proteins, polysaccharides and phenolics) of red PIWI wines produced in the UK. METHODS: In 2019 6 wines were made from the PIWI varieties Rondo, Cabernet Jura, Cabernet Cortis, Cabernet Noir, Regent and Cabertin grown at the Plumpton Rock Lodge Vineyard in Sussex (UK) and harvested at similar level of maturity (TSS, pH and TA). All juice was chaptalized to the same potential alcohol of 12%. Small scale winemaking (1L) was performed in quadruplicate using Bodum® coffee plungers to manage maceration [1]. Residual sugar content, pH, and titratable acidity were monitored during fermentation. For finished wines, the protein and polysaccharide content was measured by HPLC-SEC [2], while the total phenolic content was assessed using the Folin-Ciocalteau method [3]. The protein profile of the wines was further investigated by SDS-PAGE [4]. RESULTS: Fermentations (n=24) were all carried out to completion within 8 days.

Role of VvNCED1 in β-damascenone and abscisic acid biosynthesis: new insights into aroma development in grapes

β-Damascenone is a key norisoprenoid in grape (Vitis vinifera L.) that imparts floral and fruity aromas to both fruits and wines. It is derived from carotenoid metabolism, with neoxanthin as a substrate.

Evaluation of intravarietal variability and selection for tolerance to downy mildew: The case of Antão Vaz variety in Portugal 

Antão Vaz is a Portuguese white grapevine variety grown mainly in the wine-growing regions of Southern Portugal, particularly in the Alentejo, Lisbon and Setúbal peninsula regions. It is a very vigorous and productive variety, giving the wines a strong identity. It needs heat and sunlight and prefers deep and dry soils, which makes it tolerant to scald caused by the high summer temperatures of Southern Portugal. However, this variety is very susceptible to downy mildew, caused by plasmopara viticola, a very destructive disease in years with rainy springs.

Chemical activation of ABA signaling in grapevine through ABA receptor agonists

Grapevine (Vitis vinifera) and its derived products, in terms of cultivated area and economic volume, constitute the most relevant fruit crop in the world (7.5 million cultivated hectares). In the current context of climate change, the wine sector faces unprecedented challenges to satisfy a growing demand for wines of greater quality through sustainable viticulture. Global warming threatens quality wine production in Mediterranean wine regions in particular. The increase in heatwaves and drought episodes accelerate the vine phenology and alter the ripening and composition of grapes and wine. Extreme abiotic stress episodes compromise grape production and plant survival, intensifying the pressure on the use of limited resources like water. Abscisic acid (ABA) is an important hormone in the ripening of certain fruits and in plant response to abiotic stress.

IMPACT OF FINING WITH K-CARRAGEENAN, BENTONITE, AND CHITOSAN ON PROTEIN STABILITY AND MACROMOLECULAR COMPOUNDS OF ALBARIÑO WHITE WINE PRODUCED WITH AND WITHOUT PRE-FERMENTATIVE SKIN MACERATION

Pre-fermentative skin maceration is a technique used in white wine production to enhance varietal aroma, but it can increase protein concentration, leading to protein instability and haze formation [1]. To prevent protein instability, wine producers typically use fining agents such as bentonite, before wine bottling, which can negatively impact sensory characteristics and produce waste [2,3]. The aim of this study was to understand the impact of alternative techniques such as the application of polysaccharides (k-carrageenan and chitosan) on protein stability and on the wine macromolecular composition.