Macrowine 2021
IVES 9 IVES Conference Series 9 Anthocyanins in tannat wines rapidly evolve toward unidentified red-coloured pigments

Anthocyanins in tannat wines rapidly evolve toward unidentified red-coloured pigments

Abstract

AIM: To assess the relationship between the reported low-stability of Tannat colour during wine storage and its pigment composition and evolution

METHODS: Twenty wines were elaborated under experimental conditions over two vintages, 2015 and 2016, eight corresponding to Tannat, and six to Syrah and Marselan. Wines were stored in darkness under cellar temperature conditions. Anthocyanins and tannins were quantified by spectrophotometric methods as well as by HPLC-DAD-ESI-MSn. Analysis were made three months after the end of winemaking, and twelve and twenty-four months later.

RESULTS: At three months, the pigment content determined by HPLC (spectrophotometer) ranged between 190-240 mg/L (370-665 mg/L) in Tannat, 200-320 mg/L (420-470) in Marselan and 100-305 (220-340) in Syrah. Colour intensity was between 17-28 AU in Tannat, 15-17 in Marselan and 10-16 in Syrah. From the second analytical date on, Tannat wines registered the lowest HPLC/spectrophotometer anthocyanin quotient, tendency increasing with wine age. Besides, Tannat wines presented much higher decreases of the HPLC anthocyanin content between analytical dates than the observed in Marselan and Syrah. This was independent from the type of pigment considered. Moreover, the unresolved HPLC broad peak was also of a higher relative magnitude in Tannat wines. This could not be explained by the tannin contents or pH measured in the wines. Spectrophotometric anthocyanin results did not show such differences among cultivars, neither in the proportion of SO2 bleachable pigments. Tannat wines showed as well the highest colour intensity decreases through time.

CONCLUSIONS

The result suggests that in Tannat wines, anthocyanins may evolve rapidly towards polymeric pigments that would still have red-bluish hues but would be less stable. These findings could be behind the low colour stability reported in literature for Tannat wines, and could be a starting point for future research.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Guzmán Favre

Faculty of Agronomy, Universidad de la República, Av. Garzón 780. C.P., 12900 Montevideo, Uruguay ,Sergio, GÓMEZ-ALONSO, Regional Institute of Applied Scientific Research (IRICA), University of Castilla-La Mancha, Avda. Camilo José Cela S / N, 13071 Ciudad Real, Spain. José, PÉREZ-NAVARRO, Regional Institute of Applied Scientific Research (IRICA), University of Castilla-La Mancha, Avda. Camilo José Cela S / N, 13071 Ciudad Real, Spain. Diego, PICCARDO, Faculty of Agronomy, Universidad de la República, Av. Garzón 780. C.P., 12900 Montevideo, Uruguay  Gustavo, GONZÁLEZ-NEVES, Faculty of Agronomy, Universidad de la República, Av. Garzón 780. C.P., 12900 Montevideo, Uruguay

Contact the author

Keywords

colour stability and evolution, derived pigments, tannat, syrah, marselan

Citation

Related articles…

«Aztec» – the new white table grape resistant variety

This paper presents is the create, the study and amplographic
description the new white Greek table variety grapes “Aztec”, created in 2013 by breeder P. Zamanidis at
the Athens vineyard of the Institute of Olive, Subtropical Plants and Vine.

Extension to the Saumurois-Touraine area of an Anjou-originated method for the characterisation of the viticultural terroirs. (Loire Valley, France)

En Anjou, une méthode de caractérisation des terroirs viticoles a été développée. Elle utilise un modèle de terrain basé sur la profondeur de sol et son degré d’argilisation. Le modèle concerne des terrains issus principalement de roches mères métamorphiques et éruptives du Massif Armoricain. Cet outil de caractérisation des terroirs viticoles nécessite d’être adapté lorsqu’il s’agit d’ensembles géologiques très différents, en particulier sur sols d’apport et de roches mères tendres et poreuses du Bassin Parisien. Une meilleure compréhension de la réserve hydrique des sols apparaît être un critère important de l’interaction entre le milieu et la plante.

The FEM grapevine breeding program: new registered varieties (mid-)resistant to the main ampelopathies

“Vinum debet esse naturale ex genimine vitis et non corruptum”. The Eucharistic wine must be made with pure grapes that must not be contaminated in any way. This is how wine was born in the monastery of the Augustinians, and that is how the genetic improvement of grapevine implemented over the decades at the Agricultural Institute of San Michele all’Adige (since 1874; Trentino – Italy) has been oriented to make the cultivation of grapes always more sustainable. This concept is still current and meets the worldwide urgent need of reducing the use of chemicals, under a climate crisis scenario. Since the beginning of the twentieth century, the varieties introduced in Trentino and the new cultivars produced by pioneer breeders have already embraced the principle of sustainable viticulture.

The characterization of Vitis vinifera L cv. Cabernet sauvignon: the contribution of Ecklonia maxima seaweed extract

Biostimulants and biofertilizers are considered environmentally friendly and cost-effective alternatives to synthetic fertilizers, plant growth regulators and crop improvement products. Broadly, plant biostimulants are expected to improve nutrient use efficiency, tolerance to abiotic stress, quality traits and availability of nutrients in the soil or rhizosphere. Currently, seaweed extracts account for more than 33% of the total plant biostimulant market. Within this category, Ascophyllum nodosum (AN), is the most widely studied and applied in biostimulant formulations.

Somatic embryogenesis and organogenesis: driving regeneration forces behind grapevine genetic transformation

Cell pluripotency, enables the possibility to change the cellular fate, stimulating the reorganization and the formation of new vegetative structures from differentiated somatic tissues. Although several factors are implicated in determining the success of a breeding program through the use of modern biotechnological techniques, the definition of a specific regeneration strategy is fundamental to speed up and make these applications feasible.