WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 The chemical composition of disease resistant hybrid grape cultivars and its impact on wine quality: an exploratory enquiry into sustainable wines

The chemical composition of disease resistant hybrid grape cultivars and its impact on wine quality: an exploratory enquiry into sustainable wines

Abstract

Disease resistant hybrid grape cultivars are now allowed in a number of EU wine PDOs, and are also accepted in a number of countries outside the EU. There is increasing interest in diseases resistant hybrid grape cultivars (RHGCs) because they allow for the production of healthy, high quality grapes with limited use of pesticides and the associated environmental and public health problems. However, the chemical composition of DRHGCs differs from Vitis vinifera, and hence winemaking protocols need to be adjusted. In particular, DRHGCs are frequently high in pH, due to their mineral content, and low in titratable acidity, due to the ability of the grapes to continue to accumulate acid post-véraison. They are also frequently low in tannins, partly due to their high protein content. This can also mean that the addition of exogenous tannins might not be sufficient to increase wine tannin levels to match Vitis vinifera wines. Depending on the species used in breeding, they can also have unusual herbaceous or ‘foxy’ aromas, which can be off-putting to consumers. In response, vignerons have trailed a number of different methods for vinifying DRHGCs, such as thermovinification, carbonic maceration, and cold soaks. The results of such trials are still inconclusive, and it is likely that different cultivars will require different approaches. This study will examine the chemistry of DRHGCs, and propose vinification techniques suitable for use in producing high quality wines. The paper is part of a broader investigation on sustainability in the wine sector and contributes to establish a scientific evidence for defining further steps in the direction of the ecological transition.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Gavin DULEY, Edoardo LONGO, Federica VIGANÒ, Emanuele BOSELLI

Presenting author

Gavin DULEY  – Free University of Bozen-Bolzano

Free University of Bozen-Bolzano, Free University of Bozen-Bolzano, Free University of Bozen-Bolzano

Contact the author

Keywords

Disease resistant hybrid grape cultivars – sustainable wines – winemaking protocols – green technologies – wine chemistry

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Utilisation de données historiques pour caractériser le millésime en cours

Cet article propose la formalisation d’un modèle paramétrique pour représenter l’accumulation des sucres dans les baies de raisin durant la maturation. Le test de ce modèle sur des jeux de données réels a permis de valider l’approche proposée. Une seconde partie est axée sur l’adaptation de la méthode pour permettre la simulation du comportement du millésime en cours dès les premiers relevés de maturité. Ce travail possède de multiples applications dans le domaine de l’aide à la décision.

Callinikos: the new white table grapeseedless variety for biological produce

This paper presents is the create, the study and amplographic description the new seedless grape variety «Callinicos» was created by P. Zamanidis at the Athens Vine Department

Delineation significance in viticultural zoning: examples in the Southern Côtes-du-Rhône

In order for a spatialized gestion of wine-producing areas, delineation of viticultural zones is needed. Viticultural zoning according to qualitative expression of varieties is a great concern

Impact of malolactic fermentation on volatile composition and sensory properties of white and rosé wine from the greek variety moschofilero

Moschofilero is a native grape variety, classified as a ‘gris’ type variety, that is cultivated in PDO Mantineia, Peloponissos, Greece. It is used for the production of both white and rosé wines. Due to high altitude of the vineyards, the harvest is done by mid October, and many vintages are characterised by high acidities and low pH values.

Is wine terroir a valid concept under a changing climate?

The OIV[i] defines terroir as a concept referring to an area in which collective knowledge of the interactions between the physical and biological environment (soil, topography, climate, landscape characteristics and biodiversity features) and vitivinicultural practices develops, providing distinctive wine characteristics. Those are perceptible in the taste of wine, which drives consumer preference and, therefore, wine’s value in the marketplace. Geographical indications (GI) are recognized regulatory constructs formalizing and protecting the nexus between wine taste and the terroir generating it. Despite considering updates, GIs do not consider the nexus as a dynamic one and do not anticipate change, namely of climate. Being climate a fundamental feature of terroir, it strongly impacts wine characteristics, such as taste. According to IPCC[ii], many widespread, rapid and unprecedented changes of climate occurred, some being irreversible over hundreds to thousands of years. Climatic shifts and atmospheric-driven extreme events have been widely reported worldwide. Recent climatic trends are projected to strengthen in upcoming decades, whereas extremes are expected to increase in frequency and intensity, forcing wines away from GI definitions. Geographical shifts of viticultural suitability are projected, often moving into regions and countries different from current ones. Some authors propose adaptation in viticulture, winemaking and product innovation. We show evidence of climate changing wine characteristics in the Douro valley, home of 270-year-old Port GI. We discuss herein resist or adapt stances for when climate changes the nexus between terroir and wine characteristics. Using the MED-GOLD[iii] dashboard, a tool allowing for easy visual navigation of past and future climates, we demonstrate how policymakers can identify future moments, throughout the 21st century under different emission scenarios, when GI specifications will likely need updates (e.g., boundaries, varieties) to reduce climate-change impacts.