The effects of antioxidants and gas sparging on New Zealand white wines

Abstract

AIM: This study aims to investigate the effects of different conditions of grape processing or fermentation on the aroma profile of New Zealand white wines.

METHODS: Experiments have been designed to study how glutathione and ascorbic acid impact on the aroma compounds of Sauvignon Blanc and Pinot Gris wines. Attention was also paid to the effectiveness of two gas sparging regimes (oxygen and nitrogen), applied during fermentation, on the removal of reductive sulfur aromas in Sauvignon Blanc wines.

RESULTS: Additions of glutathione to the grape juices increased the levels of polyfunctional mercaptans in the finished wines. The lowest levels of polyfunctional mercaptan compounds were found in the wines with little supplementary antioxidants added. A high level of the joint combination of ascorbic acid and glutathione provided the wines with even higher production of polyfunctional mercaptans. Increasing the amount of elemental sulfur addition to the grape must before pressing led to an increase in the formation of several thiol compounds, including some unwanted reductive compounds. Few changes were observed in the concentrations of aroma compounds when the juices were sparged with nitrogen during fermentation. Additions of oxygen during fermentation led to some decrease in the concentration of polyfunctional mercaptans for the 10 mg/L sulfur additions, but did not significantly remove reductive aroma compounds. 

CONCLUSIONS

This study has demonstrated a positive benefit to the formation of polyfunctional mercaptans with passionfruit/ tropical aromas, from additions of glutathione and ascorbic acid at harvest. The oxygen or nitrogen applied during fermentation did not result in the removal of undesirable reductive aroma compounds. Further trials are needed to examine increased oxygen as well as nitrogen dosages during fermentation, and their effects on reductive compounds.

DOI:

Publication date: September 15, 2021

Issue: Macrowine 2021

Type: Article

Authors

Xiaotong Lyu 

School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand,Leandro Dias ARAUJO, School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand Siew-Young QUEK, School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand Wessel. J. DU TOIT, Institute for Grape and Wine Sciences/Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa Paul. A. KILMARTIN*, School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand

Contact the author

Keywords

sauvignon blanc, pinot gris, antioxidants, glutathione, ascorbic acid, reductive compounds, oxygen, nitrogen, polyfunctional mercaptans

Citation

Related articles…

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.

Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

San Joaquin Valley accounts for 40% of wine grape acreage and produces 70% of wine grape in California. Fruit quality is one of most important factors which impact the economical sustainability of farming wine grapes in this region. Due to the recent drought and expected labor cost increase, the wine industry is thrilled to understand how to improve fruit quality while maintaining the yield with less water and labor input. The present study aims to study the interactive effects of mechanical leafing and deficit irrigation on yield and berry compositions of Cabernet Sauvignon grown in warm climate of California.

The effects of cane girdling on berry texture properties and the concentration of some aroma compounds in three table grape cultivars

The marketability of the table grapes is highly influenced by the consumer demand; therefore the market value of the table grapes is mainly characterized by its berry size, colour, taste and texture. Girdling could cause accumulation of several components in plants above the ringing of the phloem including clusters and resulting improved maturity. The aim of the experiments was to examine the effect of girdling on berry texture characteristics and aroma concentration.

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Yields in the novel viticulture training system Semi-Minimal-Pruned Hedge (SMPH) are generally higher compared to the traditional Vertical Shoot Positioning (VSP). Excessive yields have a negative impact on the vine and wine quality, which can result in substantial losses in yield in subsequent vintages (alternate bearing) or penalties in fruit quality. Therefore yield regulation is essential. The bunch architecture in SMPH differs from VSP. Generally there is a higher amount but smaller bunches with lower single berry weights in SMPH compared to VSP.