Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Chemical diversity of 'special' wine styles: fortified wines, passito style, botrytized and ice wines, orange wines, sparkling wines 9 Comparison of two procedures to measure foamability from sparkling base wines supplemented with acacia gums

Comparison of two procedures to measure foamability from sparkling base wines supplemented with acacia gums

Abstract

In sparkling wines, foam is a relevant aspect whose measurement method could affect the results. The shaking test (ST) is a simple method measuring foamability1,2. But, unlike the most used and classical sparging-gas method (the so-called Mosalux; MOS)3, the amount of gas introduced is not controlled. MOS is, however, longer and needs more complex equipment. Our work compares both methods trying to demonstrate that ST can be an alternative and reliable method easily used by winemakers and enological laboratories.Eight base wines were elaborated by the traditional method, treated with bentonite, stirred and filtered. The origins of three base wines were three different regions from Spain (using Moscatel and Macabeo grapes). The other five were elaborated in the French region of Champagne (using Chardonnay and Pinot noir grapes). Four Acacia gums fractions were separately added to two selected wines (one French wine and one Spanish wine). These two (six modalities: control, bentonite-treated and gums fractions-treated wines; n=12) and the other six wines (two modalities: control and bentonite-treated wines; n’=12) were analyzed by MOS and ST. In this way the differences of wines were not only caused by the origin and by the cultivar but also by varying oenological techniques, ensuring a great variability of samples. Using MOS, wine was in a glass cylinder with a frit at the bottom injecting CO2. The Maximum Foam Height (HM-MOS) and the Foam Stability Height (HS-MOS) were measured. In ST, wine in tubes was strongly hand-shaken. The foam height was measured at 5 sec. (ST5) and every 10 sec. (ST10, ST20…) during 90 seconds (all in triplicate).ST required six times less amount of wine and gum fractions than MOS. The Maximum Foam Height by ST (HM-ST) was always reached at ST5 (closely followed by ST10). The foam stability period (when foam height was not statistically different to the last measure) always started before or just at ST70. In all modalities of both selected wines, HM-MOS and HM-ST presented similar ANOVA-statistical relationships. However, HS-MOS and ST90 were statistically related only in one selected wine. Multiple regression analyses were performed trying to know if some correlation could be established between (i) the foam height values at T5 and T10 by ST and (ii) the HM-MOS of 24 varying wines, as well as between (I) the foam height values at T70 and T90 by ST and (II) the HS-MOS. T5 and T10 were selected as the two moments presenting the two higher foam height values. T70 and T90 were selected as the two moments when the foam stability period began and finished. Multiple Regressions showed that HM-MOS correlated with ST5-ST10, and HS-MOS with ST70-ST90 (R2>70%; p

DOI:

Publication date: September 15, 2021

Issue: Macrowine 2021

Type: Article

Authors

Thierry Doco

UMR-1083/SPO, INRAE-Montpellier, France,Rafael Apolinar-Valiente, UMR-1208/IATE, Montpellier SupAgro, France. Thomas Salmon, LOCA, Université de Reims, France. Pascale Williams, UMR-1083/SPO, INRAE-Montpellier, France.  Michaël Nigen, UMR-1208/IATE, Université Montpellier, France. Christian Sanchez, UMR-1208/IATE, Université Montpellier, France. Richard Marchal, LVBE, Université de Haute-Alsace, Colmar, France.

Contact the author

Keywords

sparkling base wine; foamability; shaking test; gas-sparging method; maximum foam height; foam stability height

Citation

Related articles…

First step in the preparation of a soil map of the Protected Designation of Origin Valdepeñas (Central, Spain)

This work is a first step to make a map of vineyard soils. The characterization of the soils of the Protected Designation of Origin (D.P.O.) Valdepeñas will allow to group the studied profiles according to their physico-chemical characteristics and the concentrations of most relevant chemical elements. 90 soil profiles were analysed throughout the territory and the soils were sampled and described according to FAO (2006) and classified according to and Soil Taxonomy (2014). All samples were air dried, sieved and some physico-chemical parameters were determined following standard protocols. Also, major and trace elements were analysed by X-ray fluorescence. The statistically study was made using the SPSS program. Trend maps were made using the ArcGIS program. The studied soils have the following average properties: pH, 8.3; electrical conductivity, 0,20 dS/m (low); clay, 18.8% (medium) and CaCO3, 17.1% (high). In the study for the major elements. The major elements of these soils are Si, followed by Ca and Al, with an average content of 203.7 g/kg, 105.5 g/kg and 74.0 g/kg respectively. On the other hand, 27 trace elements have been studied. Of all of them, it can be highlighted the average values of Ba (361.8 mg/kg), Sr (129.3 mg/kg), Rb (83.4 mg/kg), V (74.2 mg/kg) and Ce (70.6 mg/kg). Ba, V and Ce values are higher and the values of Sr and Rb are lower to those found in the literature. The discriminant analysis shows a percentage of grouping of 91%. The content of chemical elements together with the physico-chemical characteristics allows grouping the soils in 4 group according to their order in the classification to Soil Taxonomy; due to the importance of the Calcisols in Castilla-La Mancha, it has been decided to establish them as their own group even if they do not appear in Soil Taxonomy classification.

Trends and challenges in International Wine Trade. The need for new strategies for companies and regions.

Trends already extended for more than 12 years show a decline in both consumption and international trade, particularly in volume. However, there are also positive signs in several categories of wine, segments and markets, as well as a better trend in terms of value. How are these trends affecting wine producers and distributors? Are they short or long term? do they mean radical and permanent changes to which a way of adaptation has to be found or are they just temporary changes that may only require some calm? How are companies adapting to these new trends? Which are their effects on wine regions?

IDENTIFICATION OF NEW RESVERATROL DERIVATIVES FORMED IN RED WINE AND THEIR BIOLOGICAL PROPERTIES

Stilbenes are natural bioactive polyphenols produced by grapevine. Recently, we have reviewed the na- tural presence of these compounds in wines [1]. This study showed that the resveratrol and its glycoside, the piceid, are the most abundant stilbenes in wines. Resveratrol is a well-known stilbene with a wide range of biological activities. Due to its specific structure, resveratrol can be oxidized in wines to form various derivatives including oligomers [2]. In this study, we investigate the resveratrol and piceid transformation in wines.

Viticoltura dl montagna: elemento di tutela e valorizzazione del territorio

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" text_orientation="center" custom_margin="65px||18px||false|false"...

Isotope composition of wine as indicator of terroir spatial variability

The goal of this work was to determine the spatial variability of terroir using the isotope composition of wine. Carbon (δ13C) and oxygen (δ18O) stable isotope composition was measured in wines from Tempranillo (Vitis vinifera L.) vineyard, located in Rioja Appellation (Spain). Stable isotope composition, leaf area, vigour, yield components, grape and wine composition were determined in a grid of 85 geo-referenced points, that was drawn across the 5 ha vineyard area