Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Chemical diversity of 'special' wine styles: fortified wines, passito style, botrytized and ice wines, orange wines, sparkling wines 9 Comparison of two procedures to measure foamability from sparkling base wines supplemented with acacia gums

Comparison of two procedures to measure foamability from sparkling base wines supplemented with acacia gums

Abstract

In sparkling wines, foam is a relevant aspect whose measurement method could affect the results. The shaking test (ST) is a simple method measuring foamability1,2. But, unlike the most used and classical sparging-gas method (the so-called Mosalux; MOS)3, the amount of gas introduced is not controlled. MOS is, however, longer and needs more complex equipment. Our work compares both methods trying to demonstrate that ST can be an alternative and reliable method easily used by winemakers and enological laboratories.Eight base wines were elaborated by the traditional method, treated with bentonite, stirred and filtered. The origins of three base wines were three different regions from Spain (using Moscatel and Macabeo grapes). The other five were elaborated in the French region of Champagne (using Chardonnay and Pinot noir grapes). Four Acacia gums fractions were separately added to two selected wines (one French wine and one Spanish wine). These two (six modalities: control, bentonite-treated and gums fractions-treated wines; n=12) and the other six wines (two modalities: control and bentonite-treated wines; n’=12) were analyzed by MOS and ST. In this way the differences of wines were not only caused by the origin and by the cultivar but also by varying oenological techniques, ensuring a great variability of samples. Using MOS, wine was in a glass cylinder with a frit at the bottom injecting CO2. The Maximum Foam Height (HM-MOS) and the Foam Stability Height (HS-MOS) were measured. In ST, wine in tubes was strongly hand-shaken. The foam height was measured at 5 sec. (ST5) and every 10 sec. (ST10, ST20…) during 90 seconds (all in triplicate).ST required six times less amount of wine and gum fractions than MOS. The Maximum Foam Height by ST (HM-ST) was always reached at ST5 (closely followed by ST10). The foam stability period (when foam height was not statistically different to the last measure) always started before or just at ST70. In all modalities of both selected wines, HM-MOS and HM-ST presented similar ANOVA-statistical relationships. However, HS-MOS and ST90 were statistically related only in one selected wine. Multiple regression analyses were performed trying to know if some correlation could be established between (i) the foam height values at T5 and T10 by ST and (ii) the HM-MOS of 24 varying wines, as well as between (I) the foam height values at T70 and T90 by ST and (II) the HS-MOS. T5 and T10 were selected as the two moments presenting the two higher foam height values. T70 and T90 were selected as the two moments when the foam stability period began and finished. Multiple Regressions showed that HM-MOS correlated with ST5-ST10, and HS-MOS with ST70-ST90 (R2>70%; p

DOI:

Publication date: September 15, 2021

Issue: Macrowine 2021

Type: Article

Authors

Thierry Doco

UMR-1083/SPO, INRAE-Montpellier, France,Rafael Apolinar-Valiente, UMR-1208/IATE, Montpellier SupAgro, France. Thomas Salmon, LOCA, Université de Reims, France. Pascale Williams, UMR-1083/SPO, INRAE-Montpellier, France.  Michaël Nigen, UMR-1208/IATE, Université Montpellier, France. Christian Sanchez, UMR-1208/IATE, Université Montpellier, France. Richard Marchal, LVBE, Université de Haute-Alsace, Colmar, France.

Contact the author

Keywords

sparkling base wine; foamability; shaking test; gas-sparging method; maximum foam height; foam stability height

Citation

Related articles…

Responses of grape yield and quality, soil physicochemical and microbial properties to different planting years

As an economically important fruit crop, continuous cropping of grapes can potentially impact soil health resulting in decreased yields.

Climate change impacts: a multi-stress issue

With the aim of producing premium wines, it is admitted that moderate environmental stresses may contribute to the accumulation of compounds of interest in grapes. However the ongoing climate change, with the appearance of more limiting conditions of production is a major concern for the wine industry economic. Will it be possible to maintain the vineyards in place, to preserve the current grape varieties and how should we anticipate the adaptation measures to ensure the sustainability of vineyards? In this context, the question of the responses and adaptation of grapevine to abiotic stresses becomes a major scientific issue to tackle. An abiotic stress can be defined as the effect of a specific factor of the physico-chemical environment of the plants (temperature, availability of water and minerals, light, etc.) which reduces growth, and for a crop such as the vine, the yield, the composition of the fruits and the sustainability of the plants. Water stress is in many minds, but a systemic vision is essential for at least two reasons. The first reason is that in natural environments, a single factor is rarely limiting, and plants have to deal with a combination of constraints, as for example heat and drought, both in time and at a given time. The second reason is that plants, including grapevine, have central mechanisms of stress responses, as redox regulatory pathways, that play an important role in adaptation and survival. Here we will review the most recent studies dealing with this issue to provide a better understanding of the grapevine responses to a combination of environmental constraints and of the underlying regulatory pathways, which may be very helpful to design more adapted solutions to cope with climate change.

Genetic causes of SO2 consumption in Saccharomyces cerevisiae

SO2 is used during winemaking for its anti-oxidative and anti-microbial properties. A high SO2 concentration in the wine has negative impacts by hiding wine aromas and delaying malolactic fermentation.

NEW INSIGHTS INTO VOLATILE SULPHUR COMPOUNDS SCALPING ON MICROAGGLOMERATED WINE CLOSURES

The evolution of wine during bottle ageing has been of great interest to ensure consistent quality over time. While the role of wine closures on the amount of oxygen is well-known [1], closures could also play other roles such as the scalping phenomenon of flavour compounds. Flavour scalping has been described as the sorption of flavour compounds by the packaging material, which could result in losses of flavour intensity. It has been reported in the literature that volatile sulphur compounds (VSC) can be scalped on wine closures depending on the type of closure (traditional and agglomerated cork, screw-cap, synthetic [2]).

Caratterizzazione delle produzioni vitivinicole dell’ area del Barolo: un’esperienza pluridisciplinare triennale (5)

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...