Macromolecular characterization of disease resistant red wine varieties (PIWI)

Abstract

AIM: Pilzwiderstandsfähige (PIWI) are disease resistant Vitis vinifera interspecific hybrid varieties that are receiving increasing attention for ability to ripen in cool climates and their resistance to grapevine fungal diseases. Wines produced from these varieties have not been characterized, especially regarding their macromolecular composition. This study characterised and quantified colloid-forming molecules (proteins, polysaccharides and phenolics) of red PIWI wines produced in the UK.

METHODS:
In 2019 6 wines were made from the PIWI varieties Rondo, Cabernet Jura, Cabernet Cortis, Cabernet Noir, Regent and Cabertin grown at the Plumpton Rock Lodge Vineyard in Sussex (UK) and harvested at similar level of maturity (TSS, pH and TA). All juice was chaptalized to the same potential alcohol of 12%. Small scale winemaking (1L) was performed in quadruplicate using Bodum® coffee plungers to manage maceration [1]. Residual sugar content, pH, and titratable acidity were monitored during fermentation. For finished wines, the protein and polysaccharide content was measured by HPLC-SEC [2], while the total phenolic content was assessed using the Folin-Ciocalteau method [3]. The protein profile of the wines was further investigated by SDS-PAGE [4].

RESULTS: Fermentations (n=24) were all carried out to completion within 8 days. The resulting wines showed important differences in terms of their macromolecular composition. The total polysaccharide content ranged between 903-1217 mg/L and was higher than the typical content of red wines [5]. Also, the total phenolic content was greater than typical red wines from Vitis vinifera (range 2478-4678 mg/L), while the total protein concentration ranged between 114 -152 mg/L. Typical values for red wine range from 10-200 mg/L [4,6]. The electrophoresis analysis showed the presence of pathogenesis-related (defence) proteins, namely chitinases and thaumatin-like proteins in all wines, while a lipid transfer protein (LTP) was found in all wines except for Cabernet Cortis. This is noteworthy as LTPs can cause severe allergenic reactions [7].

CONCLUSIONS:

Hybrid red grape varieties have the potential to produce wines with chemical and macromolecular composition in line with those from Vitis vinifera. This is a promising result for their future adoption in winegrowing regions subjected to difficult climatic conditions and high disease pressure. However, given that PIWI varieties are likely to over-produce pathogenesis-related proteins as a defence mechanism, future investigations should explore the role of these proteins with regard to colloidal and colour stability and allergenic potential.

DOI:

Publication date: September 16, 2021

Issue: Macrowine 2021

Type: Article

Authors

Edward Brearley

Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Italy,Matteo MARANGON, Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Italy Daniel JACKSON, Plumpton College, England Tony MILANOWSKI, Rathfinny Wine Estate, England Gregory DUNN, Plumpton College, England

Contact the author

Keywords

disease resistant, piwi, red wines, proteins, polysaccharides, phenolics, colloids

Citation

Related articles…

La caracterización de los moscateles

Ya en 1964 GIOVANNI DALMASSO et alii describiendo el Moscato bianco (12) ponían de manifiesto la dificultad realmente ardua en descubrir “si no todas, por lo menos las más importantes variedades que llevan el nombre de Moscateles

Effect of ozone treatments in wine production on colour traits, volatile composition, and sensory characteristics of young and short-term aged white wines

The main aim of WiSSaTech project (PRIN P2022LXY3A),supported by the Italian Ministero dell’Università e della Ricerca and European Union-NextGenerationEU, is to investigate eco-friendly and safe alternatives to sulphur dioxide (SO2) in wine production.

Composition and biological potential of grape and wine phenolic compounds

Polyphenols are common in human diets, primarily in plant-derived food and beverages. They influence multiple sensory properties such as aroma, flavour, colour, and taste, such as astringency and bitterness [1]. The major phenolic compounds in grapes and wines are anthocyanins and tannins (proanthocyanidins or condensed tannins).

Relevance of an immunoassay test for rapid detection of Botrytis cinerea in ‘Ugni blanc’ musts and wines

A new immunoassay kit, called Botrytis Lateral Flow Device has been tested to detect Botrytis cinerea on musts and wines. The comparison of the immunoassay result with the quantitative analysis of usual markers (gluconic acid, sugars and polyols) showed the relevance of this innovative tool.

Comparative studies on the dynamics of fermentation of selected wine yeasts

Alcoholic fermentation is an anaerobic biochemical process of oxidation-reduction in which carbohydrates are metabolized by the action of yeast enzymes in major products