Macromolecular characterization of disease resistant red wine varieties (PIWI)

Abstract

AIM: Pilzwiderstandsfähige (PIWI) are disease resistant Vitis vinifera interspecific hybrid varieties that are receiving increasing attention for ability to ripen in cool climates and their resistance to grapevine fungal diseases. Wines produced from these varieties have not been characterized, especially regarding their macromolecular composition. This study characterised and quantified colloid-forming molecules (proteins, polysaccharides and phenolics) of red PIWI wines produced in the UK.

METHODS:
In 2019 6 wines were made from the PIWI varieties Rondo, Cabernet Jura, Cabernet Cortis, Cabernet Noir, Regent and Cabertin grown at the Plumpton Rock Lodge Vineyard in Sussex (UK) and harvested at similar level of maturity (TSS, pH and TA). All juice was chaptalized to the same potential alcohol of 12%. Small scale winemaking (1L) was performed in quadruplicate using Bodum® coffee plungers to manage maceration [1]. Residual sugar content, pH, and titratable acidity were monitored during fermentation. For finished wines, the protein and polysaccharide content was measured by HPLC-SEC [2], while the total phenolic content was assessed using the Folin-Ciocalteau method [3]. The protein profile of the wines was further investigated by SDS-PAGE [4].

RESULTS: Fermentations (n=24) were all carried out to completion within 8 days. The resulting wines showed important differences in terms of their macromolecular composition. The total polysaccharide content ranged between 903-1217 mg/L and was higher than the typical content of red wines [5]. Also, the total phenolic content was greater than typical red wines from Vitis vinifera (range 2478-4678 mg/L), while the total protein concentration ranged between 114 -152 mg/L. Typical values for red wine range from 10-200 mg/L [4,6]. The electrophoresis analysis showed the presence of pathogenesis-related (defence) proteins, namely chitinases and thaumatin-like proteins in all wines, while a lipid transfer protein (LTP) was found in all wines except for Cabernet Cortis. This is noteworthy as LTPs can cause severe allergenic reactions [7].

CONCLUSIONS:

Hybrid red grape varieties have the potential to produce wines with chemical and macromolecular composition in line with those from Vitis vinifera. This is a promising result for their future adoption in winegrowing regions subjected to difficult climatic conditions and high disease pressure. However, given that PIWI varieties are likely to over-produce pathogenesis-related proteins as a defence mechanism, future investigations should explore the role of these proteins with regard to colloidal and colour stability and allergenic potential.

DOI:

Publication date: September 16, 2021

Issue: Macrowine 2021

Type: Article

Authors

Edward Brearley

Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Italy,Matteo MARANGON, Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Italy Daniel JACKSON, Plumpton College, England Tony MILANOWSKI, Rathfinny Wine Estate, England Gregory DUNN, Plumpton College, England

Contact the author

Keywords

disease resistant, piwi, red wines, proteins, polysaccharides, phenolics, colloids

Citation

Related articles…

Epigenetics: an innovative lever for grapevine breeding in times of climatic changes

In this video recording of the IVES science meeting 2025, Margot Berger (INRAE, UMR1287 EGFV, Institut des Sciences de la Vigne et du Vin, Villenave d’Ornon, France) speaks about epigenetics as an innovative lever for grapevine breeding in times of climatic changes. This presentation is based on an original article accessible for free on OENO One.

The temporal sensory interaction between 3-Mercaptohexanol, 3-Mercaptohexyl Acetate and Athanethiol using trata

Volatile sulphur compounds are a group of impact odorants with low odour thresholds that can contribute both positively and negatively to wine aroma. The varietal thiols, 3MH and 3MHA, are known to contribute positive tropical aromas to white wines and are most abundant in Sauvignon Blanc wines. The group of compounds contributing negative aromas are known as reductive sulphur compounds (RSCs) as they add a reductive aroma of asparagus, cooked vegetables and rotten egg to wines. All these compounds play a part in and are a result of the sulphur pathway in the yeast cell during fermentation and therefore attempting to increase the concentration of the varietal thiols may directly influence the concentration of the RSCs. The varietal thiols and the low molecular weight RSCs are highly volatile and therefore their sensory perception can change rapidly over time.

Machines and fire: developing a rapid detection system for grapevine smoke contamination using NIR spectroscopy and machine learning modelling

Bushfires are a common occurrence throughout Australia and their incidence is predicted to both rise and increase in severity due to climate change. Many of these bushfires occur in areas close to wine regions, which receive different levels of exposure to smoke. Wine produced from smoke-affected grapes are characterised by unpalatable smoky aromas such as “burning rubber”, “smoked meats” and “burnt wood”. These smoke tainted wines are unprofitable and result in significant financial losses for winegrowers.

Global geo changes, including climate: viticulture result on new viticulture-viticolture in a territory both further north of the region and at high altitude

Context and purpose of the study. In relation to global geo changes, including climatic ones, the following research has been conducted: 1. In Europe’s highest vineyard (1395 m.a.s.l.) (Cargnello, 2014÷2021; Cargnello & Col. 2019÷2021)

Rootstock effect on Cabernet Sauvignon aromatic and chemical composition

Grape quality potential for wine production is strongly influenced by environmental parameters and agronomic factors. Several studies underline the rootstock effect on scions vegetative growth and berry composition [1] with an impact on wine quality. Rootstocks are promising agronomic tools for climate change adaptation and in most grape-growing regions the potential diversity of rootstocks is not fully used and only a few genotypes are planted. Moreover, little is known about the effect of rootstock genetic variability on the aromatic composition in wines.