Macromolecular characterization of disease resistant red wine varieties (PIWI)

Abstract

AIM: Pilzwiderstandsfähige (PIWI) are disease resistant Vitis vinifera interspecific hybrid varieties that are receiving increasing attention for ability to ripen in cool climates and their resistance to grapevine fungal diseases. Wines produced from these varieties have not been characterized, especially regarding their macromolecular composition. This study characterised and quantified colloid-forming molecules (proteins, polysaccharides and phenolics) of red PIWI wines produced in the UK.

METHODS:
In 2019 6 wines were made from the PIWI varieties Rondo, Cabernet Jura, Cabernet Cortis, Cabernet Noir, Regent and Cabertin grown at the Plumpton Rock Lodge Vineyard in Sussex (UK) and harvested at similar level of maturity (TSS, pH and TA). All juice was chaptalized to the same potential alcohol of 12%. Small scale winemaking (1L) was performed in quadruplicate using Bodum® coffee plungers to manage maceration [1]. Residual sugar content, pH, and titratable acidity were monitored during fermentation. For finished wines, the protein and polysaccharide content was measured by HPLC-SEC [2], while the total phenolic content was assessed using the Folin-Ciocalteau method [3]. The protein profile of the wines was further investigated by SDS-PAGE [4].

RESULTS: Fermentations (n=24) were all carried out to completion within 8 days. The resulting wines showed important differences in terms of their macromolecular composition. The total polysaccharide content ranged between 903-1217 mg/L and was higher than the typical content of red wines [5]. Also, the total phenolic content was greater than typical red wines from Vitis vinifera (range 2478-4678 mg/L), while the total protein concentration ranged between 114 -152 mg/L. Typical values for red wine range from 10-200 mg/L [4,6]. The electrophoresis analysis showed the presence of pathogenesis-related (defence) proteins, namely chitinases and thaumatin-like proteins in all wines, while a lipid transfer protein (LTP) was found in all wines except for Cabernet Cortis. This is noteworthy as LTPs can cause severe allergenic reactions [7].

CONCLUSIONS:

Hybrid red grape varieties have the potential to produce wines with chemical and macromolecular composition in line with those from Vitis vinifera. This is a promising result for their future adoption in winegrowing regions subjected to difficult climatic conditions and high disease pressure. However, given that PIWI varieties are likely to over-produce pathogenesis-related proteins as a defence mechanism, future investigations should explore the role of these proteins with regard to colloidal and colour stability and allergenic potential.

DOI:

Publication date: September 16, 2021

Issue: Macrowine 2021

Type: Article

Authors

Edward Brearley

Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Italy,Matteo MARANGON, Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Italy Daniel JACKSON, Plumpton College, England Tony MILANOWSKI, Rathfinny Wine Estate, England Gregory DUNN, Plumpton College, England

Contact the author

Keywords

disease resistant, piwi, red wines, proteins, polysaccharides, phenolics, colloids

Citation

Related articles…

Study of wine-growing land (“terroir”) characteristics in the canton of Vaud (Switzerland): ecophysiological behaviour of the vine (cv. Chasselas)

A study of the physiological and agronomical behaviour of the vine (cv. Chasselas) was conducted between 2001 and 2003 by the Swiss Federal Research Station for Plant Production at Changins (Agroscope RAC Changins) on various wine-growing farms (terroirs) in the Canton of Vaud (Switzerland), as part of a study project on Vaudois

Reusable system for wine bottles: An analysis of acceptance among German wine consumers

Consumer demands for environmentally friendly products, including wine, are constantly increasing.

Geospatial trends of bioclimatic indexes in the topographically complex region of Barolo DOCG

Barolo DOCG is an economically important wine producing region in Northwest Italy. It is a small region of approximately 70 km2 gross area. The topography is very complex with steep sloped hills ranging in elevation from below 200 m to 550 m. Barolo DOCG wine is made exclusively from the Nebbiolo grape. Bioclimatic indexes are often used in viticulture to gain a better understanding of broader climate trends which can be compared temporally and geographically. These indexes are also used for identifying potential phenological timing, growing region suitability, and potential risks associated with expected climatic changes. Understanding how topography influences bioclimatic indexes can help with understanding of mesoscale climate behaviour leading to improved decision making and risk management strategies. The average monthly maximum and minimum temperatures, the Cool Night Index, the Huglin Index, and the monthly diurnal range (from July to October) were calculated using data from 45 weather stations within a 40 km radius of the Barolo DOCG growing area between the years 1996 and 2019. Linear and multiple regression models were developed using independent variables (elevation, aspect, slope) extracted from a digital elevation model to identify significant relationships. Bioclimatic indexes were then kriged with external drift using independent variables that showed significant relationships with the bioclimatic index using a 100 m resolution grid. The maximum monthly temperatures and the Huglin Index showed consistent significant negative relationships with elevation in all years. The minimum monthly temperatures showed no relationship with elevation but in some months a small but significant relationship was observed with aspect. Due to the lack of a relationship between minimum monthly temperatures and elevation compared to the significant relationship between maximum monthly temperatures and elevation, monthly diurnal range had a negative relationship with elevation.

Understanding the onset of systemic infection of red blotch virus and phenotypic studies of grapevines expressing a red blotch virus infectious clone

Context and purpose of the study. Red Blotch disease, an affliction caused by the Grapevine red blotch-associated virus (GRBaV), represents a formidable challenge for grape growers and winemakers in prominent viticultural regions around the world.

Yeast mannoprotein characterization and their effect on Oenococcus oeni and malolactic fermentation

Mannoproteins are released at the end of alcoholic fermentation due to yeast autolysis [1]. It has been described a positive effect of these molecules on lactic acid bacteria growth [2]. The main objective of this work was the characterization of different mannoproteins extracted from active dry yeast (ADY) and the assessment of their effect on Oenococcus oeni and malolactic fermentation (MLF).