Macromolecular characterization of disease resistant red wine varieties (PIWI)

Abstract

AIM: Pilzwiderstandsfähige (PIWI) are disease resistant Vitis vinifera interspecific hybrid varieties that are receiving increasing attention for ability to ripen in cool climates and their resistance to grapevine fungal diseases. Wines produced from these varieties have not been characterized, especially regarding their macromolecular composition. This study characterised and quantified colloid-forming molecules (proteins, polysaccharides and phenolics) of red PIWI wines produced in the UK.

METHODS:
In 2019 6 wines were made from the PIWI varieties Rondo, Cabernet Jura, Cabernet Cortis, Cabernet Noir, Regent and Cabertin grown at the Plumpton Rock Lodge Vineyard in Sussex (UK) and harvested at similar level of maturity (TSS, pH and TA). All juice was chaptalized to the same potential alcohol of 12%. Small scale winemaking (1L) was performed in quadruplicate using Bodum® coffee plungers to manage maceration [1]. Residual sugar content, pH, and titratable acidity were monitored during fermentation. For finished wines, the protein and polysaccharide content was measured by HPLC-SEC [2], while the total phenolic content was assessed using the Folin-Ciocalteau method [3]. The protein profile of the wines was further investigated by SDS-PAGE [4].

RESULTS: Fermentations (n=24) were all carried out to completion within 8 days. The resulting wines showed important differences in terms of their macromolecular composition. The total polysaccharide content ranged between 903-1217 mg/L and was higher than the typical content of red wines [5]. Also, the total phenolic content was greater than typical red wines from Vitis vinifera (range 2478-4678 mg/L), while the total protein concentration ranged between 114 -152 mg/L. Typical values for red wine range from 10-200 mg/L [4,6]. The electrophoresis analysis showed the presence of pathogenesis-related (defence) proteins, namely chitinases and thaumatin-like proteins in all wines, while a lipid transfer protein (LTP) was found in all wines except for Cabernet Cortis. This is noteworthy as LTPs can cause severe allergenic reactions [7].

CONCLUSIONS:

Hybrid red grape varieties have the potential to produce wines with chemical and macromolecular composition in line with those from Vitis vinifera. This is a promising result for their future adoption in winegrowing regions subjected to difficult climatic conditions and high disease pressure. However, given that PIWI varieties are likely to over-produce pathogenesis-related proteins as a defence mechanism, future investigations should explore the role of these proteins with regard to colloidal and colour stability and allergenic potential.

DOI:

Publication date: September 16, 2021

Issue: Macrowine 2021

Type: Article

Authors

Edward Brearley

Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Italy,Matteo MARANGON, Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Italy Daniel JACKSON, Plumpton College, England Tony MILANOWSKI, Rathfinny Wine Estate, England Gregory DUNN, Plumpton College, England

Contact the author

Keywords

disease resistant, piwi, red wines, proteins, polysaccharides, phenolics, colloids

Citation

Related articles…

Aroma and quality assessment for vertical vintages using machine learning modelling based on weather and management information

Wine quality traits are usually given by parameters such as aroma profile, total acidity, alcohol content, colour and phenolic content, among others

Influence of social interaction levels on panel effectiveness in developing wine sensory profiles using consensus method

The development of sensory profiles is crucial for quality control and innovation in the wine industry. If quantitative descriptive analysis is the most commonly used method for establishing sensory profiles due to its robustness, it presents significant limitations.

Study of the sensory dimension of the wine typicality related to a terroir and crossing with their viticultural and oenological characteristics

The typicality of a product can be characterized by properties of similarity in relation to a type, but also by the properties of distinction.

Foliar application of urea improved the nitrogen composition of Chenin grapes

The nitrogen composition of the grapes directly affects the developments of alcoholic fermentation and influences the final aromatic composition of the wines. The aim of this study was to determine the effect and efficiency of foliar applications of urea on the nitrogen composition of grapes. This study was carried out during 2023 vintage and in the Chenin vineyard located in Estacion Experimental Mendoza (Argentina). Three urea concentrations 3, 6 and 9 Kg N/ha (C1, C2, and C3, respectively) and control (T) were applied in this vineyard at veraison.

L’étude “terroirs d’Anjou”: un exemple de caractérisation intégrée des terroirs viticoles, utilisable à l’échelle parcellaire

Natural factors of the production (“terroir” and vintage) are known as an important element for identifying wines by their genuine typicité and their authenticity. The program “Terroirs d’Anjou” (1994-1999) aims at bringing the necessary scientific basis for a rational and reasoned exploitation of the terroir.