Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Chemical diversity of 'special' wine styles: fortified wines, passito style, botrytized and ice wines, orange wines, sparkling wines 9 Influence of processing parameters on aroma profile of conventional and ecological Cabernet-Sauvignon red wine during concentration by reverse osmosis

Influence of processing parameters on aroma profile of conventional and ecological Cabernet-Sauvignon red wine during concentration by reverse osmosis

Abstract

AIM: Wine aroma represents one of the most important quality parameter and it is influenced by various factors (viticulture and vinification techniques, climate or storage conditions etc.). Wines produced from conventionally and ecologically grown grapes of same variety have different chemical composition and aroma profile [1]. Aroma profile of wine can be also influenced by additional treatment of wine, such as concentration of wine by reverse osmosis (RO). Reverse osmosis represents a pressure-driven membrane separation technique that separates the initial wine on the retentate or concentrate that is retained on the membrane, and permeate that passes through it [2]. Wine permeate usually containes water, ethanol, acetic acid and several low molecular weight compounds that can pass through the membrane. This property enables the use of reverse osmosis membranes for wine concentration, partial dealcoholization, acetic acid or aroma correction [3,4].

METHODS: The aim of this study was to investigate the influence of four different pressures (2.5, 3.5, 4.5 and 5.5 MPa) and two temperature regimes (with and without cooling) on aroma profile of conventional and ecological Cabernet Sauvignon red wine during concentration by reverse osmosis. The reverse osmosis process was conducted on a plate-and-frame membrane filter Alfa Laval LabUnit M20, equipped with 6 composite RO98pHt membranes. The aroma compounds in initial wines and obtained retentates were analyzed on gas chromatograph with mass spectrometer. The solid-phase microextraction (SPME) method was used for sampling.

RESULTS: In the initial wines and their RO retentates, 45 aroma compounds were identified and divided into six groups: acids, alcohols, terpenes, carbonyl compounds, esters and volatile phenols. A certain loss of total aroma compounds was observed in conventional and ecological wine retentates, comparing to the corresponding initial wine. Higher working pressures (4.5 and 5.5 MPa) and the regime with cooling resulted in higher retention of total aroma compounds than the opposite processing parameters. Individual compounds retention depended also on their chemical properties and their interactions with the membrane surface. Reverse osmosis membranes proved to be highly permeable for acetic acid or undesirable 4-ethylphenol and 4-ethylguaiacol that made them applicable for their correction or removal. Initial wine composition influenced the retention of aroma compounds during reverse osmosis of red wines. Slightly higher retention of total acids, alcohols and terpenes was observed in conventional wine retentates than in the ecological one. The retention of carbonyl compounds, esters and volatile phenols was slightly higher during concentration of ecological wine than the conventional wine.

CONCLUSIONS:

The aroma profile of the wine retentate depends on initial wine aroma profile and applied processing parameters during reverse osmosis process (pressure, temperature, membrane type).

DOI:

Publication date: September 16, 2021

Issue: Macrowine 2021

Type: Article

Authors

Ivana Ivić, Mirela, KOPJAR, Dubravko, PICHLER, W. Ina, ĆORKOVIĆ, Anita, PICHLER, 

Faculty of Food Technology in Osijek, Croatia, Water Supply—Osijek, Croatia  

Contact the author

Keywords

conventional and ecological cabernet sauvignon, reverse osmosis, aroma compounds, processing parameters, retention

Citation

Related articles…

Evolution of flavonols during Merlot winemaking processes

The phenomenon of quercetin precipitation in wine (flanovol haze), has been manifested for many years in several wine-producing regions

Current climate change in the Oplenac wine-growing district (Serbia)

Serbian autochthonous vine varieties Smederevka (for white wines) and Prokupac (for rosé and red wines) are the primary representatives of typical characteristics of wines and terroir of numerous wine-growing areas in Serbia. In the past, these varieties were the leading vine varieties, however, as the result of globalization of winemaking and the trend of consumption of wines from widely prevalent vine varieties, they were replaced by introduced international varieties. Smederevka and Prokupac vine varieties are characterized by later time of grape ripening, and relative sensitivity to low temperatures. Climate conditions can be a restrictive factor for production of high-quality grapes and wine and for the spatial spreading of these varieties in hilly continental wine-growing areas.
This paper focuses on the spatial analysis of changes of main climate parameters, in particular, analysis of viticultural bioclimatic indices that were determined for the purposes of viticulture zoning of wine-growing areas in the period 1961-2010, and those same parameters determined for the current, that is, referential climate period (1988-2017). Results of the research, that is, analysis of climate changes indicate that the majority of examined climate parameters in the Oplenac wine-growing district improved from the perspective of Smederevka and Prokupac vine varieties. These studies of climate conditions indicate that changes of analyzed climate parameters, that is, bioclimatic indices will be favorable for cultivation of varieties with later grape ripening times and those more sensitive to low temperatures, such as the autochthonous vine varieties Smederevka and Prokupac, therefore, it is recommended to producers to more actively plant vineyards with these varieties in the territory of the Oplenac wine-growing district.

Hyperspectral imaging for precision viticulture

Precision viticulture aims to optimize vineyard management by monitoring and responding to variability within vine plots. this work presents a comprehensive study on the application of hyperspectral imaging (hsi) technology for monitoring purposes in precision viticulture. authors explore the deployment of hsi sensors on various platforms including laboratory settings, terrestrial vehicles, and unmanned aerial vehicles, facilitating the collection of high-resolution data across extensive vineyard areas.

INCREASING PINOT NOIR COLOUR DENSITY THROUGH SEQUENTIAL INOCULATION OF FLOCCULENT COMMERCIAL WINE YEAST SPECIES

Vitis vinifera L. cv. Pinot noir can be challenging to manage in the winery as its thin skins require careful handling to ensure sufficient extraction of wine colour to promote colour stability during ageing.1 Literature has shown that fermentation with flocculent yeasts can increase red wine colour density.2 As consumers prefer greater colour density in red wines,3 the development of tools to increase colour density would be useful for the wine industry. This research explored the impact of interspecies sequential inoculation and co-flocculation of commercial yeast on Pinot noir wine colour.

A microwave digestion ICP-MS method for grapevine bark elemental profiling

A rapid and reproducible microwave (MW)-assisted acid digestion protocol was developed to determine the elemental composition of grapevine bark samples using ICP-MS.