Macrowine 2021
IVES 9 IVES Conference Series 9 Impact of the non-volatile matrix composition on red wine aroma release and perception of olfactory and oral cues

Impact of the non-volatile matrix composition on red wine aroma release and perception of olfactory and oral cues

Abstract

AIM: Aroma and mouthfeel cues are the main characteristics defining red wine quality. During wine tasting, perceptual and physical-chemical phenomena leading to mutual interactions between volatiles and non-volatiles sensory active compounds, can occur. Aroma perception depends on the release of volatiles from wine, that is affected by wine constituents present in the medium (Pittari et al. 2021; Lyu et al. 2021).

Our aim was to evaluate the effect of the non-volatile wine matrix composition (polyphenols, PPh) on the release and perception of red wine aromas by an experiment of matrix enrichment.

METHODS: A saigner (bleed) wine (S) was progressively added with increasing amount of dry extract from a deodorized pressed wine (P). Four different wine matrices having the same VOCs composition and increasing (ANOVA, α<0.05) anthocyanins and tannins concentrations, were obtained: S, S1P0.5, S1P1.5, S1P2. The oral and olfactory characteristics of the wine matrices were evaluated by a descriptive sensory assessment on a numerical category scale, and the overall odour and astringency intensities were also tested.  How the different non-volatile matrix composition affected the release of VOCs, was tested by HS-SPME/GC-MS in conditions reproducing those occurring during wine tasting (30 mL of wine in INAO tulip shaped wine glasses, 25±1°C).

RESULTS: Results show that the release of red wine VOCs belonging to different chemical classes can be significantly affected by anthocyanins and tannins concentration. The release of important wine aromas, such as linalool, ethyl butanoate and ethyl decanoate raised over their detection threshold as PPhs increased.

CONCLUSIONS:

Correlations between chemical and sensory results, suggest that even if the matrix effect was not significant on the overall odour intensity, it modulated the olfactory profile of the wine matrices and the perception of specific mouthfeel features.

DOI:

Publication date: September 17, 2021

Issue: Macrowine 2021

Type: Article

Authors

Paola Piombino, Maria Tiziana,  LISANTI Elisabetta,  PITTARI Luigi , PICARIELLO Luigi MOIO 

Department of Agricultural Science, University of Naples Federico II, Italy,  

Contact the author

Keywords

red wine matrix, aromas, phenolics, release, sensory perception

Citation

Related articles…

Keg wine on tap: a sustainability-oriented innovation

How could the wine industry be more sustainable? To answer this, an Interreg French-Swiss project gathered researchers to help a French keg producer and a Swiss wine distributor make their innovation more ecological, social and economical. What innovation? A reusable plastic keg with a disposable airtight pouch inside.

Influence of vine spacing on water status, productivity, yield and must composition in Tempranillo grapevine under Duero Valley zone conditions

L’objectif de cette étude est analyser l’influence de la densité de plantation sur l’état hydrique (potentiel hydrique), le comportement productif (matière sèche et rendement) et la expression qualitative (poids de baie, degrée Brix, pH, acidité totale, concentration polyphénolique) de la varieté Tempranillo dans la Vallée du Douro, à l’A.O. Cigales.

Cabernet-Sauvignon ripening in Chile: follow-up study from 2012 to 2018

Temperature is a relevant parameter during vineyard development, affecting vine phenology and grape maturity. Moreover, the climate of the different Chilean valleys influences the varieties cultivated, the ripening period and the final quality of the wines. The use of growing degree days (GDD) is known worldwide for the study of climate in viticulture regions. However, little is known about the evolution of maturity and the sugar loading stop, based on this parameter.

In line monitoring of red wine fermentations using ir spectrospcopy

There has been a shift in modern industry to implement non-destructive and non-invasive process monitoring techniques (Helmdach et al., 2013).

From genes to vineyards: system biology and new breeding technologies for water stress tolerance in grapevines

One of the major challenges for food security and sovereignty is to produce stress-tolerant plants without introducing foreign DNA, because the legislative process, that bans transgenics, challenges us to find new solutions for producing plants that can survive the drought. To achieve this goal, we need to identify genes that can be modified to improve stress tolerance in plants. In this work, we present an online tool for exploring the transcriptome of grapevines under water stress, which is one of the most important abiotic stresses affecting viticulture. The tool is based on a comprehensive collection of rna-seq data from 997 experiments, covering four different tissues (leaf, root, berry, and shoot), various levels of water stress, and diverse genetic backgrounds (cultivars and rootstocks) with different levels of tolerance to water stress.