Macrowine 2021
IVES 9 IVES Conference Series 9 Impact of the non-volatile matrix composition on red wine aroma release and perception of olfactory and oral cues

Impact of the non-volatile matrix composition on red wine aroma release and perception of olfactory and oral cues

Abstract

AIM: Aroma and mouthfeel cues are the main characteristics defining red wine quality. During wine tasting, perceptual and physical-chemical phenomena leading to mutual interactions between volatiles and non-volatiles sensory active compounds, can occur. Aroma perception depends on the release of volatiles from wine, that is affected by wine constituents present in the medium (Pittari et al. 2021; Lyu et al. 2021).

Our aim was to evaluate the effect of the non-volatile wine matrix composition (polyphenols, PPh) on the release and perception of red wine aromas by an experiment of matrix enrichment.

METHODS: A saigner (bleed) wine (S) was progressively added with increasing amount of dry extract from a deodorized pressed wine (P). Four different wine matrices having the same VOCs composition and increasing (ANOVA, α<0.05) anthocyanins and tannins concentrations, were obtained: S, S1P0.5, S1P1.5, S1P2. The oral and olfactory characteristics of the wine matrices were evaluated by a descriptive sensory assessment on a numerical category scale, and the overall odour and astringency intensities were also tested.  How the different non-volatile matrix composition affected the release of VOCs, was tested by HS-SPME/GC-MS in conditions reproducing those occurring during wine tasting (30 mL of wine in INAO tulip shaped wine glasses, 25±1°C).

RESULTS: Results show that the release of red wine VOCs belonging to different chemical classes can be significantly affected by anthocyanins and tannins concentration. The release of important wine aromas, such as linalool, ethyl butanoate and ethyl decanoate raised over their detection threshold as PPhs increased.

CONCLUSIONS:

Correlations between chemical and sensory results, suggest that even if the matrix effect was not significant on the overall odour intensity, it modulated the olfactory profile of the wine matrices and the perception of specific mouthfeel features.

DOI:

Publication date: September 17, 2021

Issue: Macrowine 2021

Type: Article

Authors

Paola Piombino, Maria Tiziana,  LISANTI Elisabetta,  PITTARI Luigi , PICARIELLO Luigi MOIO 

Department of Agricultural Science, University of Naples Federico II, Italy,  

Contact the author

Keywords

red wine matrix, aromas, phenolics, release, sensory perception

Citation

Related articles…

Determining the impact of thiophenols on ashy flavor recognition in smoke-affected wines

Abstract
Wildfires are an increasing concern for wine-producing regions worldwide, as they generate smoke containing volatile organic compounds that can be transported over long distances and can be absorbed by wine grapes [1].

Soil functional characteristics for qualitative Sangiovese wine production in Tuscany (Italy)

Le but de ce travail est de faire une synthèse des résultats de plusieurs années de recherche en Italie centrale, sur les caractéristiques fonctionnelles du sol pour la production de vin de qualité. Le cépage de référence est le Sangiovese

Methodology for soil study and zoning

La caractérisation des sols en vue d’une étude de terroirs viticoles peut être réalisée à différents niveaux de complexité, suivant le nombre de variables pris en compte et suivant le fait que celles-ci sont spatialisées ou non

Scalable asymptomatic grapevine leafroll virus complex-3 detection through integrated airborne imaging spectroscopy, autonomous robotics, and cloud computing

The past three decades of terrestrial remote sensing research have delivered unprecedented insights into our fundamental ability to detect, quantify, and differentiate plant disease (Gold 2021). However, much of our fundamental knowledge in this domain has come from studies in non-agricultural systems and until recently, most agricultural studies, when extant, have focused on tree crops where canopy closure and large plot and plant size facilitate stress detection at low spatial resolution. Recent engineering innovations and advancements in constellation architecture design have refined the accuracy and scalability of airborne and spaceborne sensing platforms, enabling us to monitor diverse specialty crops, including grapevine, planted in smaller, spatially varied fields.

ABA and ethephon alleviated to a different extent the impact of elevated temperatures on grape berry composition

The Intergovernmental Panel on Climate Change (IPCC) forecasts an increase in global temperature and a decrease in relative humidity (RH) in the coming decades, which may have implications for berry ripening and composition.