Macrowine 2021
IVES 9 IVES Conference Series 9 Prediction of astringency in red wine using tribology approach to study in-mouth perception

Prediction of astringency in red wine using tribology approach to study in-mouth perception

Abstract

AIM: Astringency is described as a ‘dry puckering‐like sensation’ following consumption of tannins1 that affect consumer preference of foods and beverages, including red wine2. To improve the understanding of astringency, which is a complex interaction due to multiple mechanisms occurring simultaneously, further studies are needed. In this view, oral tribology is considered a useful technique for beverage study to evaluate the thin-film lubrication properties of saliva resulting in oral friction‐related sensations3. The aim of this study was to examine the film behavior of selected protein-based fluids under controlled friction conditions, to understand polyphenol-protein interactions involved in the sensation of astringency.

METHODS: A mini-traction device was self-assembled to evaluate friction during a dynamic process under different test conditions. Moreover, several oenological tannins and red wines were analyzed to relate instrumental and sensory results, and the effect of selected parameters involved in astringency perception (acidity, ethanol, polysaccharides) was investigated.

RESULTS: After a preliminary screening of several proteic fluids based on friction behavior, the addition of oenological tannins at increasing levels showed empirical evidence of linear range of interaction with protein (R2 up to 0.97) with increasing friction values. Results were greatly affected by the botanical origin of tannins, their degree of purity and the tannin-to-protein ratio. The tribological findings were confirmed by the chemical and sensory analysis of red wines, which highlighted the great contribution of phenolic compounds, in particular tannins.

CONCLUSIONS:

The inherent properties of the selected protein-based fluid allow a satisfactory prediction of astringency in wine and future work will focus on friction and film formation across a broader set of conditions to improve the characterization of wine astringency based on tribology-sensory relationship.

DOI:

Publication date: September 22, 2021

Issue: Macrowine 2021

Type: Article

Authors

Andrea Versari , Arianna RICCI, Giuseppina Paola PARPINELLO, Luigi RAGNI, Elena BABINI, 

Università degli Studi di Bologna (ITALY), 

Contact the author

Keywords

sensory analysis; red wine; astringency; phenolic compounds; tribometry

Citation

Related articles…

The role of protein-phenolic interactions in the formation of red wine colloidal particles

Colloids play a crucial role in red wine quality and stability, yet their composition and formation mechanisms remain poorly understood.

On the losses of dissolved CO2 during champagne aging

A misconception lingers in the minds of some wine consumers that Champagne wines don’t age. It’s largely a myth, certainly as far as the best cuvees are concerned. Actually, during the so-called autolysis period of time (in the closed bottle, after the “prise de mousse”), complex chemical reactions take place when the wine remains in contact with the dead yeast cells, which progressively bring complex and very much sought-after aromas to champagne. Nevertheless, despite their remarkable impermeability to liquid and air, caps or natural cork stoppers used to cork the bottles are not 100% hermetic with regard to gas transfers. Gas species therefore very slowly diffuse through the cap or cork stopper, along their respective inverse partial pressure. After the “prise de mousse”, because the partial pressure of CO2 in the bottleneck reaches up to 6 bars (at 12 °C), gaseous CO2 progressively diffuse from the bottle to the ambient air
(where the partial pressure of gaseous CO2 is only of order of 0,0004 bar).

Saccharomyces cerevisiae intraspecies differentiation by metabolomic signature and sensory patterns in wine

AIM: The composition and quality of wine are directly linked to microorganisms involved in the alcoholic fermentation. Several studies have been conducted on the impact of Saccharomyces cerevisiae on volatile compounds composition after fermentation. However, if different studies have dealt with combined sensory and volatiles analyses, few works have compared so far the impact of distinct yeast strains on the global metabolome of the wine.

Impact of the fumaric acid/glutathione pair addition before bottling on Cabernet Sauvignon wine quality

Over the last decades, climate change and rising temperatures have impacted the wine industry. Wines from warm regions tend to have a higher pH and lower total acidity.

Gastrointestinal digestion of wine sulphites and their effects on human gut microbiota

Sulphites are by far the most widely used additive in the wine industry. In relation to health, the interaction of sulphites with the gut microbiota has not been addressed so far. Following the consumption of wine and other sulphite-containing foods, the gastrointestinal tract and the microbiome are one of the first barriers that these compounds face in the human organism. In this study, we used a previously validated gastrointestinal digestion model (SIMGI®) [1,2] to evaluate the effect of intestinal digestion of wine sulphites on the gut microbiome.