Macrowine 2021
IVES 9 IVES Conference Series 9 Prediction of astringency in red wine using tribology approach to study in-mouth perception

Prediction of astringency in red wine using tribology approach to study in-mouth perception

Abstract

AIM: Astringency is described as a ‘dry puckering‐like sensation’ following consumption of tannins1 that affect consumer preference of foods and beverages, including red wine2. To improve the understanding of astringency, which is a complex interaction due to multiple mechanisms occurring simultaneously, further studies are needed. In this view, oral tribology is considered a useful technique for beverage study to evaluate the thin-film lubrication properties of saliva resulting in oral friction‐related sensations3. The aim of this study was to examine the film behavior of selected protein-based fluids under controlled friction conditions, to understand polyphenol-protein interactions involved in the sensation of astringency.

METHODS: A mini-traction device was self-assembled to evaluate friction during a dynamic process under different test conditions. Moreover, several oenological tannins and red wines were analyzed to relate instrumental and sensory results, and the effect of selected parameters involved in astringency perception (acidity, ethanol, polysaccharides) was investigated.

RESULTS: After a preliminary screening of several proteic fluids based on friction behavior, the addition of oenological tannins at increasing levels showed empirical evidence of linear range of interaction with protein (R2 up to 0.97) with increasing friction values. Results were greatly affected by the botanical origin of tannins, their degree of purity and the tannin-to-protein ratio. The tribological findings were confirmed by the chemical and sensory analysis of red wines, which highlighted the great contribution of phenolic compounds, in particular tannins.

CONCLUSIONS:

The inherent properties of the selected protein-based fluid allow a satisfactory prediction of astringency in wine and future work will focus on friction and film formation across a broader set of conditions to improve the characterization of wine astringency based on tribology-sensory relationship.

DOI:

Publication date: September 22, 2021

Issue: Macrowine 2021

Type: Article

Authors

Andrea Versari , Arianna RICCI, Giuseppina Paola PARPINELLO, Luigi RAGNI, Elena BABINI, 

Università degli Studi di Bologna (ITALY), 

Contact the author

Keywords

sensory analysis; red wine; astringency; phenolic compounds; tribometry

Citation

Related articles…

Analyzing firms’ dynamic capabilities to identify the actions for a sustainable future of the Italian wine sector

The UN Agenda 2030 for Sustainable Development, a global plan for a better future, requires actions.

Applicability of spectrofluorometry and voltammetry in combination with machine learning approaches for authentication of DOCa Rioja Tempranillo wines

The main objective of the work was to develop a simple, robust and selective analytical tool that allows predicting the authenticity of Tempranillo wines from DOCa Rioja. The techniques of voltammetry and absorbance-transmission and fluorescence excitation emission matrix (A-TEEM) spectroscopy have been applied in combination with machine learning (ML) algorithms to classify red wines from DOCa Rioja according to region (Alavesa, Alta or Oriental) and category (young, crianza or reserva).

Effect of bleaching with different agents on protein hydrolysate characteristics

High temperatures can reduce the phenolic content of grapes, especially anthocyanins and copigments involved in colour stabilisation of red wines [1]. This could make it difficult to maintain stable colour during storage [2].

Are dicysteinyl polysulfanes responsible for post-bottling release of hydrogen sulfide?

Hydrogen sulfide (H2S) has a significant impact on wine aroma attributes and wine quality when present at concentrations above its aroma threshold of 1.1 to 1.6 μg/L.

The chain of effects between sunburn necroses and rot infestation in the context of climate change

Climate change will increasingly challenge future viticulture due to long-enduring and extreme weather conditions, jeopardizing yield and wine quality in various ways.