Macrowine 2021
IVES 9 IVES Conference Series 9 Prediction of astringency in red wine using tribology approach to study in-mouth perception

Prediction of astringency in red wine using tribology approach to study in-mouth perception

Abstract

AIM: Astringency is described as a ‘dry puckering‐like sensation’ following consumption of tannins1 that affect consumer preference of foods and beverages, including red wine2. To improve the understanding of astringency, which is a complex interaction due to multiple mechanisms occurring simultaneously, further studies are needed. In this view, oral tribology is considered a useful technique for beverage study to evaluate the thin-film lubrication properties of saliva resulting in oral friction‐related sensations3. The aim of this study was to examine the film behavior of selected protein-based fluids under controlled friction conditions, to understand polyphenol-protein interactions involved in the sensation of astringency.

METHODS: A mini-traction device was self-assembled to evaluate friction during a dynamic process under different test conditions. Moreover, several oenological tannins and red wines were analyzed to relate instrumental and sensory results, and the effect of selected parameters involved in astringency perception (acidity, ethanol, polysaccharides) was investigated.

RESULTS: After a preliminary screening of several proteic fluids based on friction behavior, the addition of oenological tannins at increasing levels showed empirical evidence of linear range of interaction with protein (R2 up to 0.97) with increasing friction values. Results were greatly affected by the botanical origin of tannins, their degree of purity and the tannin-to-protein ratio. The tribological findings were confirmed by the chemical and sensory analysis of red wines, which highlighted the great contribution of phenolic compounds, in particular tannins.

CONCLUSIONS:

The inherent properties of the selected protein-based fluid allow a satisfactory prediction of astringency in wine and future work will focus on friction and film formation across a broader set of conditions to improve the characterization of wine astringency based on tribology-sensory relationship.

DOI:

Publication date: September 22, 2021

Issue: Macrowine 2021

Type: Article

Authors

Andrea Versari , Arianna RICCI, Giuseppina Paola PARPINELLO, Luigi RAGNI, Elena BABINI, 

Università degli Studi di Bologna (ITALY), 

Contact the author

Keywords

sensory analysis; red wine; astringency; phenolic compounds; tribometry

Citation

Related articles…

Service crop effects on grapevine water and nitrogen status and yield under Mediterranean climate

Service crops in vineyard can provide multiple ecosystem services but they can also lead to competition with the grapevine for soil resources in the Mediterranean region due to potential severe droughts (Garcia et al., 2018). One of the levers of action to manage this competition is the choice of species adapted in terms of growth dynamics and water and nutrients’ needs. The objectives of this study were to determine the effect of temporary service crops on grapevine water and nitrogen status and grapevine yield and yield components in a Mediterranean vineyard.

Developmental stage-specific effects of high temperature on aroma accumulation in ‘Marselan’ grapes from the Helan Mountain region

The aroma of wine grapes is influenced by a complex metabolic network, with terroir factors, especially high temperatures, playing a critical role during berry development.

A sundial vineyard: impact of row density and orientation on cv. Cabernet-Sauvignon physiology and grape composition, insights to face a climate change scenario

An experimental vineyard with a radial array was planted in 2018, to provide valuable information on the relationship between orientation and planting density on plant physiology and cluster microclimate, and the consequent impacts on grape secondary metabolites, including aromas and polyphenols.

Geostatistical analysis of the vineyards in the canton of Geneva in relation to soil and climate

Soil and climate maps at the 1:10000 scales exist for more than 12’000 ha of Swiss vineyards. The use of these maps as consulting tools for growers remains difficult due to the complexity

Monitoring gas-phase CO2 in the headspace of champagne glasses through diode laser spectrometry

During Champagne or sparkling wine tasting, gas-phase CO2 and volatile organic compounds invade the headspace above glasses [1], thus progressively modifying the chemical space perceived by the consumer. Gas-phase CO2 in excess can even cause a very unpleasant tingling sensation perturbing both ortho- and retronasal olfactory perception [2]. Monitoring as accurately as possible the level of gas-phase CO2 above glasses is therefore a challenge of importance aimed at better understanding the close relationship between the release of CO2 and a collection of various tasting parameters.