Macrowine 2021
IVES 9 IVES Conference Series 9 What do we know about the kerosene/petrol aroma in riesling wines?

What do we know about the kerosene/petrol aroma in riesling wines?

Abstract

AIM: 1,1,6-Trimethyl-1,2-dihydronaphthalene (TDN) is a controversial aroma component found in Riesling wines. It belongs to the family of C13-norisoprenoids and is mainly associated with kerosene/petrol notes. TDN can add complexity to the wine aroma at medium – low concentrations and deteriorate the wine bouquet when its content is high. No TDN aromas are usually perceived in young Riesling wines, but they can appear after several years of aging due to the gradual formation of TDN. Management of TDN in Riesling wines is an actual task, since global warming can promote formation of this compound and compromise the aromatic composition of wine. Therefore, the aim of the current work was, firstly, to study the sensory particularities of TDN in Riesling wine at various concentrations. Secondly, to investigate the ability of bottle closures to absorb (scalp) TDN from Riesling wine under various storage conditions. These studies also include the comparative assessment of our findings with previously published data.

METHODS: sensory analysis, GC-MS (SBSE), HPLC,1H-NMR and other methods related to the synthesis and determination of TDN.

RESULTS: First of all, the method of the synthesis of highly purified TDN (95% and 99.5%) was optimized [1]. The obtained TDN was used for the calibrations in GC-MS analysis and for the sensory and TDN scalping studies. As a result, three sensory thresholds for TDN in Riesling wine were determined: detection threshold (about 4 μg/L), recognition threshold (about 10-12 μg/L) and rejection threshold (about 71-82 μg/L) [2]. It was also demonstrated, that the TDN aroma recognition was easier in the cooled wine. The defined thresholds were discussed in relation to the previously reported sensory thresholds determined by other panels and in other wine matrices. In the experiment of TDN scalping, five bottle closures were studied under storage conditions which varied by ambient temperature (14 °C vs 27 °C) and bottle position (horizontal vs vertical) [3]. A large difference in TDN scalping rate was observed for synthetic and glass stoppers depending on the storage conditions. For example, the TDN absorbance from the wine was more than three times faster by synthetic stoppers at the lower storage temperature compared to the higher one (vertical bottle position). Cork stoppers demonstrated a fast scalping process in all storage scenarios, absorbing up to 40% TDN. In the wine bottled with BVS screw caps, only a minor decrease of TDN was found in all storage variants.

CONCLUSIONS:

TDN is an aroma compound that requires effective control tools in Riesling wines. The described results of the sensory analysis can be used as a reference for the desired content of TDN in finished Riesling wines. At the same time, the outcomes of the TDN scalping study provide a deeper understanding of the impact of bottle closures and storage conditions on the TDN content in wine.

DOI:

Publication date: September 22, 2021

Issue: Macrowine 2021

Type: Article

Authors

Andrii Tarasov, Nicoló Giuliani (1), Alexey Dobrydnev (2), Christoph Schuessler (1), Nikolaus Müller, Yulian Volovenko (2), Doris Rauhut (1), Rainer Jung (1) 

(1) Hochschule Geisenheim University (Germany) (2) Faculty of Chemistry, Taras Shevchenko National University of Kyiv (Ukraine)

Contact the author

Keywords

1,1,6-trimethyl-1,2-dihydronaphthalene (tdn); sensory threshold; scalping; bottle closure; wine

Citation

Related articles…

The legal concept of “cultural heritage” to refurbish the wine sector’s priorities

Following the latest oiv global report (april 26, 2024), the prevailing perception of wine consumption finds itself undergoing one of its most challenging adjustments. It’s plausible to anticipate a shift in the scope of pdo wines towards more human-centered products (wells and stiefel, 2019), necessitating the entire sector to adapt strategies to public interest patterns (touzeau, 2010: 17-31). Previously, a dominant notion of cultural property underscored the value of wine regions; the primary interest revolved around estate owners and retailers, along with vigneron tales.

Effects of different organic amendments on soil, vine, grape and wine, in a long-term field experiment in Chinon vineyard (France)

In a long-term experiment carried out in Chinon vineyard (37, France) during 23 years, the effects of several organic amendments were studied on soil, vine, grapes and wine. Four main treatments were compared on a calcareous sandy soil: control without organic amendment, dry crushed pruning wood at 2.1.t-1.ha-1.year-1 (D1), cow manure at 10 t-1. ha-1.year-1 (D1) and cow manure applied at 20 t-1.ha-1.year-1 (D2). D1 levels were calculated to fill the annual humus losses by mineralization.

MicrobiomeSupport: Towards coordinated microbiome R&I activities in the food system to support (EU and) international bioeconomy goals

Microbiomes have crucial roles in maintaining life on Earth, and their functions drive human, animal, plant and environmental health. The microbiome research landscape is developing rapidly and is performed in many different science fields using similar concepts but mostly one (eco)system at-a-time. Thus, we are only starting to unravel and understand the interconnectedness of microbiomes across the (eco)systems.

Unconventional methods to delve deeper into the influence of temperature and nutrition on Chardonnay wine profiles

Temperature and yeast nutrition profoundly impact wine quality and sensory attributes by modulating yeast aroma production and release during fermentation. While temperature and nitrogen’s individual effects are well-studied, their combined influence, including nutrient type and addition timing, remains underexplored. hence, this study aimed to investigate the simultaneous effects of these factors on fermentation kinetics, aroma production and sensory profile, particularly in a Chardonnay wine production selected as a quite aromatically neutral base.

A look back at 20 years of exploring the future of the vines and wines sector

What if, in 25 years, most wines were dealcoholized and flavored ? What if vines were only cultivated to combat erosion, store carbon, and provide anthocyanins…? What if climate change completely changed the list of vine varieties cultivable for wine production in France? What if food stores had completely disappeared in favor of virtual platforms? And if… because the long-term future is not predetermined and therefore not knowable, because the future is open to several possibilities, because the future does not emerge from nothing but from the present which conceals heavy trends and weak signals, prospective approaches make it possible to consider the room for maneuver that actors have to promote the advent of a future, which we can hope to be chosen, at least in part.