Macrowine 2021
IVES 9 IVES Conference Series 9 What do we know about the kerosene/petrol aroma in riesling wines?

What do we know about the kerosene/petrol aroma in riesling wines?

Abstract

AIM: 1,1,6-Trimethyl-1,2-dihydronaphthalene (TDN) is a controversial aroma component found in Riesling wines. It belongs to the family of C13-norisoprenoids and is mainly associated with kerosene/petrol notes. TDN can add complexity to the wine aroma at medium – low concentrations and deteriorate the wine bouquet when its content is high. No TDN aromas are usually perceived in young Riesling wines, but they can appear after several years of aging due to the gradual formation of TDN. Management of TDN in Riesling wines is an actual task, since global warming can promote formation of this compound and compromise the aromatic composition of wine. Therefore, the aim of the current work was, firstly, to study the sensory particularities of TDN in Riesling wine at various concentrations. Secondly, to investigate the ability of bottle closures to absorb (scalp) TDN from Riesling wine under various storage conditions. These studies also include the comparative assessment of our findings with previously published data.

METHODS: sensory analysis, GC-MS (SBSE), HPLC,1H-NMR and other methods related to the synthesis and determination of TDN.

RESULTS: First of all, the method of the synthesis of highly purified TDN (95% and 99.5%) was optimized [1]. The obtained TDN was used for the calibrations in GC-MS analysis and for the sensory and TDN scalping studies. As a result, three sensory thresholds for TDN in Riesling wine were determined: detection threshold (about 4 μg/L), recognition threshold (about 10-12 μg/L) and rejection threshold (about 71-82 μg/L) [2]. It was also demonstrated, that the TDN aroma recognition was easier in the cooled wine. The defined thresholds were discussed in relation to the previously reported sensory thresholds determined by other panels and in other wine matrices. In the experiment of TDN scalping, five bottle closures were studied under storage conditions which varied by ambient temperature (14 °C vs 27 °C) and bottle position (horizontal vs vertical) [3]. A large difference in TDN scalping rate was observed for synthetic and glass stoppers depending on the storage conditions. For example, the TDN absorbance from the wine was more than three times faster by synthetic stoppers at the lower storage temperature compared to the higher one (vertical bottle position). Cork stoppers demonstrated a fast scalping process in all storage scenarios, absorbing up to 40% TDN. In the wine bottled with BVS screw caps, only a minor decrease of TDN was found in all storage variants.

CONCLUSIONS:

TDN is an aroma compound that requires effective control tools in Riesling wines. The described results of the sensory analysis can be used as a reference for the desired content of TDN in finished Riesling wines. At the same time, the outcomes of the TDN scalping study provide a deeper understanding of the impact of bottle closures and storage conditions on the TDN content in wine.

DOI:

Publication date: September 22, 2021

Issue: Macrowine 2021

Type: Article

Authors

Andrii Tarasov, Nicoló Giuliani (1), Alexey Dobrydnev (2), Christoph Schuessler (1), Nikolaus Müller, Yulian Volovenko (2), Doris Rauhut (1), Rainer Jung (1) 

(1) Hochschule Geisenheim University (Germany) (2) Faculty of Chemistry, Taras Shevchenko National University of Kyiv (Ukraine)

Contact the author

Keywords

1,1,6-trimethyl-1,2-dihydronaphthalene (tdn); sensory threshold; scalping; bottle closure; wine

Citation

Related articles…

Landscape study of the Suzette rural district. A vineyard in the heart of the Dentelles de Montmirail

Le territoire de Suzette se développe sur un grand coteau viticole et boisé situé au cœur du site naturel des Dentelles de Montmirail (40km au nord d’Avignon). Ce site est à la fois l’un des pôles d’attraction touristique du département et le lieu d’une production viticole renommée (Gigondas, Vacqueyras, Beaumes de Venise, … ). Cet ensemble remarquable de terrasses viticoles et de crêtes rocheuses et boisées, forme un des paysages emblématiques du Vaucluse. La commune est actuellement soumise à une importante pression foncière due à une forte demande résidentielle. Le paysage du coteau forme et possède de ce fait un patrimoine culturel de valeur et une image de marque importante pour la production viticole locale.

Use of Fourier Transform Infrared Spectroscopy (FTIR) to rapidly verify the botanical authenticity of gum arabic

Gum arabic is composed of a polysaccharide rich in galactose and arabinose along with a small protein fraction [1, 2], which gives its stabilizing power with respect to the coloring substances or tartaric precipitation of bottled wine. It is a gummy exudation from Acacia trees; the products used in enology have two possible botanical origins, i.e. Acacia seyal and Acacia senegal, with different chemical-physical features and consequently different technological effects on wines. The aim of this work is to evaluate the feasibility of discrimination of commercial gums Arabic between their two different sources, on the basis of the absorption of the Fourier Transform Infrared (FT-IR) spectra of their aqueous solutions, in order to propose an extremely rapid and cost-saving method for quality control laboratories.

The importance of free trade agreements and non tariffs measures in a context of resurgent retaliatory trade measures against wine

Most of the issues surrounding trade in wine and spirits focus on the fight against non-tariff measures.

Exploring magnesium defficiency in Welschriesling grapevines: A multi-omics approach to address viticultural challenges

Magnesium (Mg) deficiency poses a significant challenge to viticulture, particularly affecting Welschriesling (WR), a key grape variety in Austrian and Central European vineyards.

Physico-chemical properties of vine pruning residues with potential as enological additive

Grapes are one of the world’s primary fruit crops, and pruning activities generate high amounts of annual wood wastes [1]. These pruning shoots contain valuable phenolic compounds and could have numerous potential applications [1,2]. Consequently, the aim of this work was to evaluate the physico-chemical properties of vine pruning residues with potential as enological additives. For this purpose, grapevine shoots from 12 varieties grown in Chile were collected during the winter of 2021.