Macrowine 2021
IVES 9 IVES Conference Series 9 What do we know about the kerosene/petrol aroma in riesling wines?

What do we know about the kerosene/petrol aroma in riesling wines?

Abstract

AIM: 1,1,6-Trimethyl-1,2-dihydronaphthalene (TDN) is a controversial aroma component found in Riesling wines. It belongs to the family of C13-norisoprenoids and is mainly associated with kerosene/petrol notes. TDN can add complexity to the wine aroma at medium – low concentrations and deteriorate the wine bouquet when its content is high. No TDN aromas are usually perceived in young Riesling wines, but they can appear after several years of aging due to the gradual formation of TDN. Management of TDN in Riesling wines is an actual task, since global warming can promote formation of this compound and compromise the aromatic composition of wine. Therefore, the aim of the current work was, firstly, to study the sensory particularities of TDN in Riesling wine at various concentrations. Secondly, to investigate the ability of bottle closures to absorb (scalp) TDN from Riesling wine under various storage conditions. These studies also include the comparative assessment of our findings with previously published data.

METHODS: sensory analysis, GC-MS (SBSE), HPLC,1H-NMR and other methods related to the synthesis and determination of TDN.

RESULTS: First of all, the method of the synthesis of highly purified TDN (95% and 99.5%) was optimized [1]. The obtained TDN was used for the calibrations in GC-MS analysis and for the sensory and TDN scalping studies. As a result, three sensory thresholds for TDN in Riesling wine were determined: detection threshold (about 4 μg/L), recognition threshold (about 10-12 μg/L) and rejection threshold (about 71-82 μg/L) [2]. It was also demonstrated, that the TDN aroma recognition was easier in the cooled wine. The defined thresholds were discussed in relation to the previously reported sensory thresholds determined by other panels and in other wine matrices. In the experiment of TDN scalping, five bottle closures were studied under storage conditions which varied by ambient temperature (14 °C vs 27 °C) and bottle position (horizontal vs vertical) [3]. A large difference in TDN scalping rate was observed for synthetic and glass stoppers depending on the storage conditions. For example, the TDN absorbance from the wine was more than three times faster by synthetic stoppers at the lower storage temperature compared to the higher one (vertical bottle position). Cork stoppers demonstrated a fast scalping process in all storage scenarios, absorbing up to 40% TDN. In the wine bottled with BVS screw caps, only a minor decrease of TDN was found in all storage variants.

CONCLUSIONS:

TDN is an aroma compound that requires effective control tools in Riesling wines. The described results of the sensory analysis can be used as a reference for the desired content of TDN in finished Riesling wines. At the same time, the outcomes of the TDN scalping study provide a deeper understanding of the impact of bottle closures and storage conditions on the TDN content in wine.

DOI:

Publication date: September 22, 2021

Issue: Macrowine 2021

Type: Article

Authors

Andrii Tarasov, Nicoló Giuliani (1), Alexey Dobrydnev (2), Christoph Schuessler (1), Nikolaus Müller, Yulian Volovenko (2), Doris Rauhut (1), Rainer Jung (1) 

(1) Hochschule Geisenheim University (Germany) (2) Faculty of Chemistry, Taras Shevchenko National University of Kyiv (Ukraine)

Contact the author

Keywords

1,1,6-trimethyl-1,2-dihydronaphthalene (tdn); sensory threshold; scalping; bottle closure; wine

Citation

Related articles…

Application of GiESCO “bio-metaethics” charter in practice: the “direct” involvement of vine grower, winemaker, society

On the basis of a direct agreement between the GiESCO and the vine grower, the winemaker and the consumers (individual; company; public or private organizations), the communication on the content of the charter can be done as follows:
• Commitment to respect the basic rules of the GiESCO “BIO – MetaEthics” charter.
1/ Put Mankind in the depth of all concerns in a universal context: (grower, consumer, citizen, work valuing, education, security)
2/ Insure minimum impact on environment by optimizing cultivation technics: (maximum of natural biodegradable products, friendly practices, short channels, renewable energies, terroir sustainability)

Investigation on Valbelluna area and its oenological potentiality: case study on Prosecco DOC

Valbelluna valley is an area located in the northeastern Italy. It is extended from the East-West between Feltre and Belluno, along the Piave waterway and enclosed between Cansiglio valley on the South and the Dolomites in the North. Here, the villages of Limana and Trichiana are present, which are considered for decades potentially interesting areas to aim a niche production with own particular properties.The position of this area, its sun exposition, its soil composition and the microclimate, are ideal factors to obtain vines and consequently wines with unique features especially regarding the diversity and complexity aroma.

Geospatial trends of bioclimatic indexes in the topographically complex region of Barolo DOCG

Barolo DOCG is an economically important wine producing region in Northwest Italy. It is a small region of approximately 70 km2 gross area. The topography is very complex with steep sloped hills ranging in elevation from below 200 m to 550 m. Barolo DOCG wine is made exclusively from the Nebbiolo grape. Bioclimatic indexes are often used in viticulture to gain a better understanding of broader climate trends which can be compared temporally and geographically. These indexes are also used for identifying potential phenological timing, growing region suitability, and potential risks associated with expected climatic changes. Understanding how topography influences bioclimatic indexes can help with understanding of mesoscale climate behaviour leading to improved decision making and risk management strategies. The average monthly maximum and minimum temperatures, the Cool Night Index, the Huglin Index, and the monthly diurnal range (from July to October) were calculated using data from 45 weather stations within a 40 km radius of the Barolo DOCG growing area between the years 1996 and 2019. Linear and multiple regression models were developed using independent variables (elevation, aspect, slope) extracted from a digital elevation model to identify significant relationships. Bioclimatic indexes were then kriged with external drift using independent variables that showed significant relationships with the bioclimatic index using a 100 m resolution grid. The maximum monthly temperatures and the Huglin Index showed consistent significant negative relationships with elevation in all years. The minimum monthly temperatures showed no relationship with elevation but in some months a small but significant relationship was observed with aspect. Due to the lack of a relationship between minimum monthly temperatures and elevation compared to the significant relationship between maximum monthly temperatures and elevation, monthly diurnal range had a negative relationship with elevation.

Optimization of a tool to determine the oxygen avidity of a wine through the kinetics of consumption by its phenolic and aromatic fractions (PAFs)

Wine oxidation phenomena during the different processes of winemaking, aging and storage are closely related to the presence of oxygen and to the wine’s capacity for consumption.

Effects of the biodynamic preparations 500 and 501 on vine and berry physiology, pedology and the soil microbiome

In the pursuit of increasing sustainability, climate change resiliency and independence of synthetic pesticides in agriculture, the interest of consumers and producers in organic and biodynamic farming is steadily increasing. This is in particular the case for the vitivinicultural industry in Europe, where more and more producers are converting from organic to biodynamic farming. However, clear scientific evidence showing that biodynamic farming improves vine physiology, vine stress resilience, berry or wine quality, or is more sustainable for the environment is still lacking although this issue has been addressed by several research teams worldwide.