Macrowine 2021
IVES 9 IVES Conference Series 9 Do natural wines differ from conventionally-produced wines?

Do natural wines differ from conventionally-produced wines?

Abstract

AIM: In recent years, consumer awareness for consuming healthy and environmental sustainability products has considerably increased [1]. In an ever-changing and highly competitive environment such as the wine sector, production of wines without sulfites, or biodynamic, organic or vegan wines, has experienced an important increase to meet the new needs of consumers [2,3]. Beyond these categories of regulated products, a new concept has emerged: natural wines (NW), for which there is not an established definition or legal regulation. Rather, producers have a personal idea of naturalness under the premise of applying minimal intervention from grape to wine production [4]. In this context, it is hypothesized that self-defined natural wines are different from conventional wines (CW) in their sensory and chemical profile. The predicament of natural wine is based on anecdotic declarations and assumes that minimal intervention guarantees the production of wines with organoleptic properties able to express the “terroir” and thus promote wine diversity, plurality and sensory typicity against the risk of standardization of CW. In addition, we want to test the hypothesis that NW are healthier than conventional by evaluating toxic-related metabolites.

METHODS: Twenty-eight commercial Spanish white wines were studied. Half were NW (i.e., winemakers declare to follow minimal intervention during grape and wine production) and half were conventional wines (CW). Pairs of NW-CW sharing variety and region of production were selected. They were submitted to sensory analysis following free sorting task and chemical characterization for conventional oenological parameters, histamines, ochratoxin A, ethyl carbamate and metals. RESULTS: NW present significantly higher pH levels, volatile acidity, color intensity, turbidity and higher contents of the histamine putrescine than CW, while lower levels of malic acid and sulfites were observed in NW. No significant differences were found for the levels of heavy metals and the rest of chemicals evaluated.Concerning sensory properties, while a higher proportion of NW than CW presented winemaking-related defaults, NW with positive fruity notes could also be identified.

CONCLUSIONS:

This work could partly confirm the main hypothesis by showing certain significant sensory and chemical differences between NW and CW. It appears necessary to carry out similar studies with a wider number of wines to achieve deeper knowledge in this field.

DOI:

Publication date: September 22, 2021

Issue: Macrowine 2021

Type: Article

Authors

Carlota Sánchez, Alejandro, Suárez, Samuel, Rivas, Pablo, Alonso, Eva, Parga,  Jordi, Ballester,  María-Pilar, Sáenz-Navajas,

Instituto De Ciencias De La Vid Y Del Vino (Ur-Csic-Gr). La Rioja, Spain.
 Instituto De Productos Naturales Y Agrobiología, Csic, Tenerife, Spain
Université De Bourgogne, Dijon, France Purificación, 

Contact the author

Keywords

wine, natural, conventional, production method , sensory characterisation, sorting task

Citation

Related articles…

Keg wine on tap: a sustainability-oriented innovation

How could the wine industry be more sustainable? To answer this, an Interreg French-Swiss project gathered researchers to help a French keg producer and a Swiss wine distributor make their innovation more ecological, social and economical. What innovation? A reusable plastic keg with a disposable airtight pouch inside.

Traçability of main mineral elements on the chain “soil-leaf-must-wine” in relation to “terroir” and vintage in Loire Valley(France)

Dans le cadre de recherches sur la mise en évidence et le déterminisme d’un «effet terroir »un réseau de parcelles du cépage Cabernet Franc greffé sur S04, a été suivi de 1979 à 1990 en Val de Loire (A.O.C. Saumur-Champigny, Chinon et Bourgueil). Des analyses chimiques (N,P, K, Ca, Mg, Fe, Mn, Zn) ont été réalisées sur le sol, les feuilles au stade véraison, les moûts en cours de maturation et à la vendange et enfin sur le vin, pour 18 sites (répartis dans 12unités terroirs de base) et 7 millésimes différents.

Modulation of the tannic structure of Tannat wines through maceration techniques: cross analytical and sensory study

The Tannat grape, native to the foothills of the Pyrenees in France, is known for producing wines with intense colour, exceptional tannic structure, and remarkable aging potential. These distinctive characteristics are attributed to its unique genome, making Tannat one of the grape varieties with the highest tannins concentration.

Metabolomics of grape polyphenols as a consequence of post-harvest drying: on-plant dehydration vs warehouse withering

A method of suspect screening analysis to study grape metabolomics, was developed [1]. By performing ultra-high performance liquid chromatography (UHPLC) – high-resolution mass spectrometry (HRMS) analysis of the grape extract, averaging 320-450 putative grape compounds are identified which include mainly polyphenols. Identification of metabolites is performed by a new HRMS-database of putative grape and wine compounds expressly constructed (GrapeMetabolomics) which currently includes around 1,100 entries.

Understanding graft union formation by using metabolomic and transcriptomic approaches during the first days after grafting in grapevine

Since the arrival of Phyloxera (Daktulosphaira vitifolia) in Europe at the end of the 19th century, grafting has become essential to cultivate Vitis vinifera. Today, grafting provides not only resistance to this aphid, but it used to adapt the cultivars according to the type of soil, environment, or grape production requirements by using a panel of rootstocks. As part of vineyard decline, it is often mentioned the importance of producing quality grafted grapevine to improve vineyard longevity, but, to our knowledge, no study has been able to demonstrate that grafting has a role in this context. However, some scion/rootstock combinations are considered as incompatible due to poor graft union formation and subsequently high plant mortality soon after grafting. In a context of climate change where the creation of new cultivars and rootstocks is at the centre of research, the ability of new cultivars to be grafted is therefore essential. The early identification of graft incompatibility could allow the selection of non-viable plants before planting and would have a beneficial impact on research and development in the nursery sector. For this reason, our studies have focused on the identification of metabolic and transcriptomic markers of poor grafting success during the first days/week after grafting; we have identified some correlations between some specialized metabolites, especially stilbenes, and grafting success, as well as an accumulation of some amino acids in the incompatible combination. The study of the metabolome and the transcriptome allowed us to understand and characterise the processes involved during graft union formation.