Macrowine 2021
IVES 9 IVES Conference Series 9 Do natural wines differ from conventionally-produced wines?

Do natural wines differ from conventionally-produced wines?

Abstract

AIM: In recent years, consumer awareness for consuming healthy and environmental sustainability products has considerably increased [1]. In an ever-changing and highly competitive environment such as the wine sector, production of wines without sulfites, or biodynamic, organic or vegan wines, has experienced an important increase to meet the new needs of consumers [2,3]. Beyond these categories of regulated products, a new concept has emerged: natural wines (NW), for which there is not an established definition or legal regulation. Rather, producers have a personal idea of naturalness under the premise of applying minimal intervention from grape to wine production [4]. In this context, it is hypothesized that self-defined natural wines are different from conventional wines (CW) in their sensory and chemical profile. The predicament of natural wine is based on anecdotic declarations and assumes that minimal intervention guarantees the production of wines with organoleptic properties able to express the “terroir” and thus promote wine diversity, plurality and sensory typicity against the risk of standardization of CW. In addition, we want to test the hypothesis that NW are healthier than conventional by evaluating toxic-related metabolites.

METHODS: Twenty-eight commercial Spanish white wines were studied. Half were NW (i.e., winemakers declare to follow minimal intervention during grape and wine production) and half were conventional wines (CW). Pairs of NW-CW sharing variety and region of production were selected. They were submitted to sensory analysis following free sorting task and chemical characterization for conventional oenological parameters, histamines, ochratoxin A, ethyl carbamate and metals. RESULTS: NW present significantly higher pH levels, volatile acidity, color intensity, turbidity and higher contents of the histamine putrescine than CW, while lower levels of malic acid and sulfites were observed in NW. No significant differences were found for the levels of heavy metals and the rest of chemicals evaluated.Concerning sensory properties, while a higher proportion of NW than CW presented winemaking-related defaults, NW with positive fruity notes could also be identified.

CONCLUSIONS:

This work could partly confirm the main hypothesis by showing certain significant sensory and chemical differences between NW and CW. It appears necessary to carry out similar studies with a wider number of wines to achieve deeper knowledge in this field.

DOI:

Publication date: September 22, 2021

Issue: Macrowine 2021

Type: Article

Authors

Carlota Sánchez, Alejandro, Suárez, Samuel, Rivas, Pablo, Alonso, Eva, Parga,  Jordi, Ballester,  María-Pilar, Sáenz-Navajas,

Instituto De Ciencias De La Vid Y Del Vino (Ur-Csic-Gr). La Rioja, Spain.
 Instituto De Productos Naturales Y Agrobiología, Csic, Tenerife, Spain
Université De Bourgogne, Dijon, France Purificación, 

Contact the author

Keywords

wine, natural, conventional, production method , sensory characterisation, sorting task

Citation

Related articles…

Characterization of varieties named ‘Caiño’ cultivated from Northwest of Spain

The ‘Caiño’ cultivar was cultivated in Galicia (Northwestern Spain) before the invasion of grape phylloxera. Genetic diversity from this cultivar have been described and considered as originating in Galicia, ‘Caiño Tinto’, ‘Caiño Bravo’, ‘Caiño Redondo’, ‘Caiño Longo’ and ‘Caiño Blanco’.

Association between dietary pattern and wine consumption and Alzheimer’s disease in a cohort from La Rioja (Spain)

Addressing modifiable risk factors is the most promising strategy to prevent/delay Alzheimer Disease (AD)[1]. The aim of the study was to establish the connections between dietetic habits, wine consumption and AD. Thus, 98 volunteers were recruited: 50 diagnosed as AD and 48 healthy/controls. The Food Frequency Questionnaire (FFQ) was used for dietary patterns assessment and, based on these data, the Mind Diet Score was calculated. (Poly)phenol metabolites (especially derived from wine consumption) were analyzed by UPLC-QqQ-MS/MS in 24-h urine samples to confirm dietary (poly)phenol consumption.

Altered lignans accumulation in a somatic variant of Tempranillo with increased extractability of polyphenols during winemaking

Vegetative propagation of grapevines can generate spontaneous somatic variations, providing a valuable source for cultivar improvement. In this context, natural variation in the composition of phenolic compounds in grapevine berries and seeds stands as a pivotal factor in crafting wines with diverse oenological profiles from the same cultivar. To deepen on the understanding of the physiological and genetic mechanisms driving somatic variation in grape phenolics, here we characterized a somatic variant from Tempranillo Tinto, the clone VN21, that exhibits an intense reduced berry skin cuticle and increased extractability of phenolic compounds during wine fermentation.

The grapevine single-berry clock, practical tools and outcomes 

The dynamic sequence of physiological events along the three-months of berry development from anthesis to ripe stage has been thoroughly investigated. Most studies were performed on average samples, taking care to crush enough fruits to fairly represent the overall trend of the future harvest. However, phenological stages like 30% caps off (EL25) highlights the asynchronous nature of this population. Consequently, softening, onset of sugar accumulation and coloration were melted by asynchrony in a developmental mumbo jumbo, until their respective timing could be clarified by single berries approaches.

Phenolic extraction during fermentation as affected by ripeness level of Syrah/R99 grapes

L’extraction phénolique au cours de la fermentation à partir de vendanges de différents degrees de maturité du cépage Syrah/R99 a été etudiée. Cette travail fait parti d’un projet focalisé sur la qualité du raisin et des vins obtenus au cours du millésime 2002. Les vignes sont situées à Stellenbosch (Afrique du Sud) sur un sol Glenrose