Macrowine 2021
IVES 9 IVES Conference Series 9 Tropical fruit aroma in white wines: the role of fermentation esters and volatile thiols

Tropical fruit aroma in white wines: the role of fermentation esters and volatile thiols

Abstract

Volatile thiols are impact aroma compounds, well-known in the literature for imparting tropical fruit aromas such as passion fruit, guava, grapefruit, and citrus in white wines [1]. More recent evidence suggests that tropical fruit aromas are also caused by other aroma compounds besides thiols, such as fermentation esters, or the interaction between these volatile families. Therefore, the objective of this study was to investigate the effects of combining esters and/or thiols to determine their impact on the fruitiness aroma perception of white wines. Pinot gris wine was produced at the OSU research winery and was dearomatized using Lichrolut® EN. Combinations of fermentation volatile compounds were added to the wine, forming the aroma base. Treatment wines were composed of additions of different concentrations and combinations of thiols and/or esters. Samples were subjected to sensory analysis where forty-six white wine consumers evaluated the orthonasal aroma of the wines and participated in Check-All-That-Apply (CATA). Following the results obtained by CATA, samples were subjected to a Sensory Descriptive Analysis (SDA) panel where 13 trained panellists evaluated the intensity of the most used aroma attributes elicited by consumers. Thiol treatments without the presence of esters contributed to earthy and grassy aromas. Overall, tropical fruit aromas were detected in the several treatments containing esters and esters + thiols. Differences in the intensity of the aroma attributes were observed as well . This study showed that esters and thiols are necessary for tropical fruit aroma causation in white wines. Therefore, grape growers and winemakers should adapt viticultural and winemaking conditions to increase the concentrations of both aroma families and therefore enhance the tropical fruit aroma perception in white wines.

DOI:

Publication date: September 24, 2021

Issue: Macrowine 2021

Type: Article

Authors

Angelica Iobbi, Elizabeth Tomasino

Oregon State University, OR, USA, 

Contact the author

Keywords

aroma causation, check-all-that-apply, sensory descriptive analysis, tropical fruit aroma, white wine

Citation

Related articles…

Viticultura protegida: uso de mallas sombreadoras fotoselectivas como una herramienta para enfrentar la crisis climática en uva de mesa en el norte de Chile

The production of table grapes in Chile is of great importance, being one of the main established fruit crops with over 43,000 hectares distributed across a diverse climate range, from the southern limit of the Atacama desert to the mediterranean zone. Chile is also one of the leading exporters of table grapes. producers must confront the challenges posed by the climate crisis, such as decreased rainfall, increased heatwaves, and extreme temperature events during the growing season, mainly associated with desertification in northern Chile (Atacama and Coquimbo regions).

A DNA-free editing approach to help viticulture sustainability: dual editing of DMR6-1 and DMR6-2 enhances resistance to downy mildew 

The sustainability of viticulture hinges on maintaining quality and yield while reducing pesticide use. Promising strides in this direction involve the development of clones with enhanced disease tolerance, particularly through the knockout of plant susceptibility genes. Knocking out of Downy Mildew Resistant 6 (DMR6) led to increased levels of endogenous salicylic acid (SA), a regulator of immunity, resulting in enhanced tolerance to Downy Mildew (DM) and other diseases in various crops.

Projected impacts of climate change on viticulture over France wine-regions using downscalled CMIP6 multi-model data

Winegrape is a crop for which the quality and the identity of the final product depends strongly on the
climatic conditions of the year. By impacting production systems and the way in which wines are
developed, climate change represents a major challenge for the wine industry (Ollat et al., 2021).

Mechanical fruit zone leaf removal and deficit irrigation practices interact to affect yield and fruit quality of Cabernet Sauvignon grown in a hot climate

Cabernet Sauvignon is the top red wine cultivar in CA, however, the hot climate in Fresno is not ideal for Cabernet Sauvignon, particularly for berry color development. Fruit-zone leaf removal and irrigation were studied previously to have the significant effect on grape yield performance and berry quality. But the timing of leaf removal and the timing of irrigation are still inconclusive. Also, mechanical fruit-zone leaf removal is relatively new in CA. Our study aims to identify the interactive effect of mechanical fruit-zone leaf removal and irrigation on Cabernet Sauvignon’s yield performance and fruit quality and find the ideal timing of leaf removal and irrigation to maximize the berry color while maintaining the sustainable yield level.

Evaluation of six red grapevine cultivars inoculated with Neofusicoccum parvum in a “terroir” of La Mancha wine región (Spain)

Aim: Among Botryosphaeriaceae species associated with Botryosphaeria dieback of grapevines, Neofusicoccum parvum is one of the most virulent and fastest wood-colonizing fungi. This study aimed to evaluate the susceptibility of six red grapevine cultivars (“Bobal”, “Monastrell”, “Garnacha Tinta”, “Moravia Agria”, “Tinto Velasco” and “Moribel” to N. parvum, under field conditions.