GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Firmness of the grapes. Mechanical tests and definition of indices. Study of the evolution of berry skin resistance during alcoholic fermentation

Firmness of the grapes. Mechanical tests and definition of indices. Study of the evolution of berry skin resistance during alcoholic fermentation

Abstract

Context and purpose of the study: The mechanical strength or firmness of a fruit is considered an important parameter to characterize its state of maturity or conservation, as other parameters such as sugar level or color. The mechanical resistance of grapes influences the integrity and sanitary quality of the harvest. In this study, the mechanical characteristics of grapes berries are studied at harvesting time in order to determine their properties of firmness and the resistance of the berry skin during the alcoholic fermentation. Special indices are defined measuring the energy needed to crush 50% of the initial diameter of the berry. We applied these indices to different varieties and get different results either for the entire berry firmness or for the skin resistance.

Material and methods : To evaluate the firmness of grapes, INRA has developed a tool specifically adapted to measure the skin resistance of the grapes (Penelaup Robot, patented). We used here two grape varieties: Grenache Noir and Carignan Noir.Firmness of the entire berries were measured at harvesting. Right after, the fermentations were conducted at 21°C, in low volume tanks (<1kg) using “French Press” coffee plunger with similar and standard conditions. 1 kg of berries were crushed and poured in the tank. Lalvin ICV OKAY yeast (20 g/hL) and SO2 (250 µL of a 8% solution) were added simultaneously. Cap management was carried out every day during alcoholic fermentation (AF) by submerging pomace with the plunger. The decrease of sugar concentration was monitored by measuring the Brix degree and the density. Fermentations were considered done when the density remained stable (7 to 8 days) with density less than 995. At the end of AF the classical wine chemical parameters were determined. Skin resistance measurements were carried out at the beginning and at the end of AF plus several points in between.

Results: We defined mechanical indices dedicated to the firmness of grapes. Using these indices, the result of this study shows differences in firmness related to the grape varieties: Grenache Noir and Carignan Noir have different mechanical properties. Similarly, during the alcoholic fermentation, the resistance of the skins highlights different properties of the berries immersed in the fermenting must. This had never measured until now. These results give new information on the mechanical properties of the grapes. It would help the winemaker to better choose the type of fermentation and maceration adapted to his grapes depending on the type of wine he wants to produce.

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Abbal, PHILIPPE (1), Céline PONCET LEGRAND (1), Stephanie CARILLO (1), Magali BES (3), Marie Agnès DUCASSE (4) , Elissa ABI‐HABIB (2), Aude VERHNET (2)

(1) INRA, UMR SPO 2, Place viala, 34060 Montpellier Cedex
(2) SupAgro, 2, Place viala, 34060 Montpellier Cedex
(3) INRA, UMT Minicave, UE Pech Rouge, 11430 Gruissan
(4) IFV, UMT Minicave, Domaine de Pech Rouge, 11430 Gruissan

Contact the author

Keywords

grapes, firmness, rheology, berry skin, fermentation

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Infrared spectroscopy investigation of fresh grapevine organs for clustering and classification.

The spectral information acquired from fresh whole grapevine organs have yet to be fully explored. Infrared spectroscopy provides the means to rapidly measure fresh plant material and providing extensive information on the physical and chemical structure of samples.

Cultivation forms and viticulture models adapting to adverse “environmental” conditions

One of the main problems in viticultural production in Istria (Croatia) is a labour shortage in periods of intensive works, mainly during summer, respectively during tourist season.

Rootstock regulation of scion phenotypes: the relationship between rootstock parentage and petiole mineral concentration

Grapevine is grown as a graft since the end of the 19th century. Rootstocks not only provide tolerance to Phylloxera but also ensure the supply of water and mineral nutrients to the scion. Rootstocks are an important mean of adaptation to environmental conditions, because the scion controls the typical features of the grapes and wine. However, among the large diversity of rootstocks worldwide, few of them are commercially used in the vineyard. The aim of this study was to investigate the extent to which rootstocks modify the mineral composition of the petioles of the scion. Vitis vinifera cvs. Cabernet-Sauvignon, Pinot noir, Syrah and Ugni blanc were grafted onto 55 different rootstock genotypes and planted in a vineyard as three replicates of 5 vines. Petioles were collected in the cluster zone with 6 replicates per combination. Petiolar concentrations of 13 mineral elements (N, P, K, S, Mg, Ca, Na, B, Zn, Mn, Fe, Cu, Al) at veraison were determined. Scion, rootstock and the interaction explained the same proportion of the phenotypic variance for most mineral elements. Rootstock genotype showed a significant influence on the petiole mineral element composition. Rootstock effect explained from 7 % for Cu to 25 % for S of the variance. The difference of rootstock conferred mineral status is discussed in relation to vigor and fertility. Rootstocks were also genotyped with 23 microsatellite markers. Data were analysed according to genetic groups in order to determine whether the petiole mineral composition could be related to the genetic parentage of the rootstock. Thanks to a highly powerful design, it is the first time that such a large panel of rootstocks grafted with 4 scions has been studied. These results give the opportunity to better characterize the rootstocks and to enlarge the diversity used in the vineyard.

The effect of management practices and landscape context on vineyard biodiversity

Intensification is considered one of the major drivers of biodiversity loss in farmland. The more intensive management practices that have been adopted the last decades, contributed to species declines from all taxonomic groups. Moreover, agricultural intensification has led to an important change of land use. Complex, mixed agro-ecosystems with cultivated and non-cultivated habitats have been converted to simplified, intensive and homogeneous ones with severe effects on biodiversity.

Denial of the wine-growing landscape

The aim of this presentation is to analysis the impact of the viticultural landscape in communication on labels of wine produced in heroic viticulture areas. To verify whether the ”viticultural landscape