Macrowine 2021
IVES 9 IVES Conference Series 9 Chinese localization of wine aroma descriptors

Chinese localization of wine aroma descriptors

Abstract

Wine aroma descriptors are important tools for wine evaluation. The present well-known wine aroma descriptor system was created and based on Western culture, which makes difficult for Chinese consumers to recognize and learn wine.

AIM: The aim of this study was to update the wine aroma descriptor system for Chinese.

Methods: Fifty-four wine aroma descriptors of ‘Le nez du vin’ was used as substitution candidates. Firstly, a survey on unfamiliar aromas was distributed to 150 untrained Chinese wine consumers. Twenty attributors, such as blackcurrent buds, quince, linden, were selected as the most 17 unfamiliar. Then, a descriptive analysis was performed by trained tasting panel to substitute the targeted twenty aromas perfume. Furthermore, reference standards were looked and new le nez du vin were made. Finally, a substitution analysis was performed to replace the unknown wine aroma to the Chinese local aromas. 

 Results: The results showed that three unfamiliar descriptors stayed as it was. Four attributors were failed to find the suitable substitutions. Thirteen terms were replaced by Chinese local aroma attributors. 

Conclusions:

These results confirmed that the on-going wine descriptors urgently need to be updated for Chinese consumers. A local wine aroma wheel was built and it is more convenient for Chinese to learn and communicate.

DOI:

Publication date: September 24, 2021
Issue: Macrowine 2021
Type: Article

Authors

Wen Ma, Gang JIN, Lingsheng WEI, Xi LV, Laichao XU 

School of Food & Wine, Ningxia University, P. R. China,

Contact the author

Keywords

wine, aroma descriptor, china, sensory analysis

Citation

Related articles…

The role of ampelographic collection in genetic improvement of native varieties and the creation new varieties

The available plant diversity is maintained in global genetic collections and germplasm banks. One of the main objectives of the study of the genetic material of vine still conducting research to characterize the genotypes and the creation of new varieties. The main ampelographic collection of the country, the largest in the Balkans, is located at the Athens Vine Institute in Lykovrisi, Attica, in an area of 70 acres. It contains more than 800 varieties, most of which are indigenous. The Institute is conducting research on the genetic improvement of native varieties and the creation new winemaking and table grape varieties of high productivity, grape quality, resistance to fungal diseases and their adaptability to stresses using the hybridization method using European high-quality varieties.

Analyzing firms’ dynamic capabilities to identify the actions for a sustainable future of the Italian wine sector

The UN Agenda 2030 for Sustainable Development, a global plan for a better future, requires actions.

The impact of selected odorant combinations in wine oxidative aroma and their interactive role on the olfactory perception

It is widely known the impact that oxidation has on wine sensory degradation and eventually, in the shortening of its longevity.

Strigolactones as possible elicitors in sunburn defense mechanisms in grapes: preliminary results

Due to altered climatic conditions, grape berry sunburn has become one of the main challenges in contemporary viticulture.

SHIRAZ FLAVONOID EXTRACTABILITY IMPACTED BY HIGH AND EXTREME HIGH TEMPERATURES

Climate change is leading to an increase in average temperature and in the severity and occurrence of heatwaves, and is already disrupting grapevine phenology. In Australia, with the evolution of the weather of grape growing regions that are already warm and hot, berry composition including flavonoids, for which biosynthesis depends on bunch microclimate, are expected to be impacted [1]. These compounds, such as anthocyanins and tannins, contribute substantially to grape and wine quality. The goal of this research was to determine how flavonoid extraction is impacted when bunches are exposed to high (>35 °C) and extreme high (>45 °C) temperatures during berry development and maturity.