Macrowine 2021
IVES 9 IVES Conference Series 9 Chinese localization of wine aroma descriptors

Chinese localization of wine aroma descriptors

Abstract

Wine aroma descriptors are important tools for wine evaluation. The present well-known wine aroma descriptor system was created and based on Western culture, which makes difficult for Chinese consumers to recognize and learn wine.

AIM: The aim of this study was to update the wine aroma descriptor system for Chinese.

Methods: Fifty-four wine aroma descriptors of ‘Le nez du vin’ was used as substitution candidates. Firstly, a survey on unfamiliar aromas was distributed to 150 untrained Chinese wine consumers. Twenty attributors, such as blackcurrent buds, quince, linden, were selected as the most 17 unfamiliar. Then, a descriptive analysis was performed by trained tasting panel to substitute the targeted twenty aromas perfume. Furthermore, reference standards were looked and new le nez du vin were made. Finally, a substitution analysis was performed to replace the unknown wine aroma to the Chinese local aromas. 

 Results: The results showed that three unfamiliar descriptors stayed as it was. Four attributors were failed to find the suitable substitutions. Thirteen terms were replaced by Chinese local aroma attributors. 

Conclusions:

These results confirmed that the on-going wine descriptors urgently need to be updated for Chinese consumers. A local wine aroma wheel was built and it is more convenient for Chinese to learn and communicate.

DOI:

Publication date: September 24, 2021
Issue: Macrowine 2021
Type: Article

Authors

Wen Ma, Gang JIN, Lingsheng WEI, Xi LV, Laichao XU 

School of Food & Wine, Ningxia University, P. R. China,

Contact the author

Keywords

wine, aroma descriptor, china, sensory analysis

Citation

Related articles…

Epigenetics: an innovative lever for grapevine breeding in times of climate changes

Climate change results in erratic weather conditions, which may lead for many crops including grapevine, to a reduced production and products of lower quality. Concerning grapevine, climate change results in shorter growing seasons and dates for budbreak, flowering and fruit maturity occur earlier in many regions. It also leads to an increase of various pests and diseases, as well as the vectors responsible for disease distribution.

Volatile and phenolic composition of Agiorgitiko wines from eight different areas of PDO Nemea zone

AIM: Agiorgitiko (Vitis vinifera L. cv.) is the most cultivated red grapewine variety in Greece1 located mainly in Nemea region, the largest PDO zone in Greece2. Although Agiorgitiko is considered as one of the most interesting red grape varieties, not only in Greece3, but also at international level4,5, however, there is a lack of knowledge

Studying the redox state of wines under oxidative processes with a multi-parametric analysis

The detection of reducing compounds such as phenolic acids, anthocyanins or tannins is of prime importance to decipher on the antioxidant and anti-aging properties of wines.

Cover crops sown in the inter-rows shape the weed communities in three vineyards across Italy

The use of cover crops (CCs) is widely proposed as an alternative to traditional soil management in vineyards to exploit a wide range of ecosystem services. The presence of a CC in the inter-row space is known to control spontaneous vegetation in vineyards, primarily through the biomass of the sown crop, which competes with other spontaneous species for soil resources.

Carbon isotope discrimination in berry juice sugars: changes in response to soil water deficits across a range of vitis vinifera cultivars

In wine producing regions around the world, climate change has the potential to decrease the frequency and amount of precipitation and increase average and extreme temperatures. This will lower soil water availability and increase evaporative demand, thereby increasing the frequency and intensity of water deficit experienced in vineyards. Among other things, grapevines manage water deficit by regulating stomatal closure. The dynamics of this regulation, however, have not been well characterized across the range of Vitis vinifera cultivars. Providing a method to understand how different cultivars regulate their stomata, and hence water use in response to changes in soil water deficits will help growers manage vineyards and select plant material to better meet quality and yield objectives in a changing climate.