Macrowine 2021
IVES 9 IVES Conference Series 9 Chinese localization of wine aroma descriptors

Chinese localization of wine aroma descriptors

Abstract

Wine aroma descriptors are important tools for wine evaluation. The present well-known wine aroma descriptor system was created and based on Western culture, which makes difficult for Chinese consumers to recognize and learn wine.

AIM: The aim of this study was to update the wine aroma descriptor system for Chinese.

Methods: Fifty-four wine aroma descriptors of ‘Le nez du vin’ was used as substitution candidates. Firstly, a survey on unfamiliar aromas was distributed to 150 untrained Chinese wine consumers. Twenty attributors, such as blackcurrent buds, quince, linden, were selected as the most 17 unfamiliar. Then, a descriptive analysis was performed by trained tasting panel to substitute the targeted twenty aromas perfume. Furthermore, reference standards were looked and new le nez du vin were made. Finally, a substitution analysis was performed to replace the unknown wine aroma to the Chinese local aromas. 

 Results: The results showed that three unfamiliar descriptors stayed as it was. Four attributors were failed to find the suitable substitutions. Thirteen terms were replaced by Chinese local aroma attributors. 

Conclusions:

These results confirmed that the on-going wine descriptors urgently need to be updated for Chinese consumers. A local wine aroma wheel was built and it is more convenient for Chinese to learn and communicate.

DOI:

Publication date: September 24, 2021
Issue: Macrowine 2021
Type: Article

Authors

Wen Ma, Gang JIN, Lingsheng WEI, Xi LV, Laichao XU 

School of Food & Wine, Ningxia University, P. R. China,

Contact the author

Keywords

wine, aroma descriptor, china, sensory analysis

Citation

Related articles…

USE OF 13C CP/MAS NMR AND EPR SPECTROSCOPIC TECHNIQUES TO CHARACTERIZE MACROMOLECULAR CHANGES IN OAK WOOD(QUERCUS PETRAEA) DURING TOASTING

For coopers, toasting process is considered a crucial step in barrel production during which oak wood (Q. petraea) develops several aromatic nuances released to the wine during its maturation. Toasting consists of applying different degrees of heat to a barrel for a specific period. As the temperature increases, thermal degradation of oak wood structure produces a huge range of chemical compounds. Many studies have identified the main key aroma volatile compounds (whisky-lactone, furfural, eugenol, guaiacol, vanillin). However, detailed information on how the chemical structure of oak wood degrades with increasing toasting level is still lacking.

The effect of sulfur compounds on the formation of varietal thiols in Sauvignon Blanc and Istrian Malvasia wines

Varietal thiols 3-sulfanylhexan-1-ol (3SH), 3-sulfanylhexyl acetate (3SHA) and 4-methyl-4-sulfanylpentan-2-one (4SMP) are essential for fruity aromas of Sauvignon Blanc wines. The concentration of varietal thiols in wines was thought to be related to the concentration of their precursors in grapes, however only a small proportion of precursors are released to varietal thiols during fermentation. New findings suggested that specific grape juice metabolites could significantly impact on the development of three major varietal thiols and other aroma compounds of Sauvignon Blanc wines.

Mouthfeel effects due to oligosaccharides within a wine matrix

The mouthfeel of wine is one of the most important aspects of the organoleptic experience of tasting wine. In wine a great deal is known about certain compositional components and how they impact mouthfeel perception, such as phenolics. But there are other components where little is understood, such as oligosaccharides. Saccharides in general are found in very low concentrations with wine, especially compared to conventional foods. There is very little information about how oligosaccharides influence the mouthfeel perception of wine.

Teasing apart terroir: the influence of management style on native yeast communities within Oregon wineries and vineyards

Newer sequencing technologies have allowed for the addition of microbes to the story of terroir. The same environmental factors that influence the phenotypic expression of a crop also shape the composition of the microbial communities found on that crop. For fermented goods, such as wine, that microbial community ultimately influences the organoleptic properties of the final product that is delivered to customers. Recent studies have begun to study the biogeography of wine-associated microbes within different growing regions, finding that communities are distinct across landscapes. Despite this new knowledge, there are still many questions about what factors drive these differences. Our goal was to quantify differences in yeast communities due to management style between seven pairs of conventional and biodynamic vineyards (14 in total) throughout Oregon, USA. We wanted to answer the following questions: 1) are yeast communities distinct between biodynamic vineyards and conventional vineyards? 2) are these differences consistent across a large geographic region? 3) can differences in yeast communities be tied to differences in metabolite profiles of the bottled wine? To collect our data we took soil, bark, leaf, and grape samples from within each vineyard from five different vines of pinot noir. We also collected must and a 10º brix sample from each winery. Using these samples, we performed 18S amplicon sequencing to identify the yeast present. We then used metabolomics to characterize the organoleptic compounds present in the bottled wine from the blocks the year that we sampled. We are actively in the process of analysing our data from this study.

Proanthocyanin composition in new varieties from monastrell

AIM: Proanthocyanidins are responsible in an important way for positive aspects in wines, such as body and color stability in red wines, but they are also responsible for sensory characteristics that can be negative for their quality when found in excessive concentrations.