Macrowine 2021
IVES 9 IVES Conference Series 9 Use of pectinolytic yeast in wine fermentations

Use of pectinolytic yeast in wine fermentations

Abstract

The use of pectinolytic enzymes in winemaking is state of the art. These enzymes catalyse the degradation of pectic substances through depolymerization (hydrolases and lyases) and de-esterification. As a result, it supports the extraction of juice and facilitates filtration. It has also been shown in winemaking that the presence of pectinolytic enzymes improves the stability, taste, texture, colour and aroma of products. With regard to enzymes currently applied in winemaking, enzymes derived from filamentous fungi dominate the enzyme industry. Fungal-based pectinolytic enzymes specifically require purification from the culture medium to eliminate unwanted side reactions, which is poorly sustainable. Some non-traditional yeast strains have been reported to exhibit pectinolytic activities. Therefore, the direct use of pectinolytic yeast during wine fermentation process can be an attractive and alternative source for the use of enzymes as input. However, little is known about the effect of non-traditional yeasts with pectinolytic activities on wine fermentation and product quality. In fact, the use of such yeasts can have a very positive effect on the taste complexity and sensory richness of the product. In this study, from 17 different species more than 500 yeast strains were screened for their polygalacturonase activities (PGA). Enzymatic screening was performed in solid rich medium containing 2% polygalacturonic acid, and the activity of PGA+ strains was separately quantified with a microplate colorimetric test developed in this study. The superior pectinolytic yeasts were dominated by Kluyveromyces and Cryptococcus sp.. High pectinase producing Kluyveromyces sp (intrinsic yeast of grape must) was selected for further winemaking experiments. In particular, we investigated the consequences of the use of K. marxianus strains in sequential fermentation with S. cerevisae on fermentation kinetics, aroma profiles and more widely sensory properties of wines. Overall, the use of pectinolytic yeast in wine fermentations has the potential to benefit winemakers. In particular, hydrolysis of grape cell walls by K. marxianus endopolygalacturonase results in the release of compounds found in the skin of the grape that improve the quality of the wine.

DOI:

Publication date: September 24, 2021

Issue: Macrowine 2021

Type: Article

Authors

Mehmet Gazaloglu, Prof Dr. Carole Camasara , Prof Dr. Sylvie Dequin, Prof. Dr. Elke Nevoigt

Sciences for Oenology, INRA, Montpellier SupAgro, Department of Life Sciences and Chemistry, Jacobs University Bremen

Contact the author

Keywords

nonconventional yeast pectinases

Citation

Related articles…

Correlation between skin cell wall composition and phenolic extractability in Cabernet sauvignon wines

The phenolic component of red wine is responsible for important elements of flavor and mouthfeel, and thus quality of the finished wine. Additionally, many of these phenolics have been associated with health benefits such as reduction of the risk of developing cardiovascular disease, cancer, osteoporosis and preventing Alzheimer’s disease. While the origins, concentrations, and chemistries of the phenolics in a finished red wine are well known, the fundamental mechanisms and kinetics of extraction of these phenolics from grape skins and seeds during red wine fermentation are poorly understood. This lack of knowledge regarding the extraction mechanisms of phenolics during red wine fermentation makes informed manipulations of the finished wine’s phenolic composition difficult.

Effect of the winemaking technology on the phenolic compounds, foam parameters in sparklig wines

Contribution Sparkling wines elaborated following the traditional method undergo a second fermentation in closed bottles of base wines, followed by aging of wines with lees for at least 9 months. Most of the sparkling wines elaborated are white and rosé ones, although the production of red ones is highly increasing. One of the initial problems in red sparkling wine processing is to obtain suitable base wines that should have moderate alcohol content and astringency and adequate color intensity; which is difficult to obtain when grapes must be harvested at low phenolic and industrial maturity stage. The low phenolic maturity degree in the red grapes makes essential to choose an adequate winemaking methodology to obtain the base wines because the extracted polyphenols will vary according the winemaking technique: carbonic maceration or destemmed-crushed grapes.

Use of Fourier Transform Infrared Spectroscopy (FTIR) to rapidly verify the botanical authenticity of gum arabic

Gum arabic is composed of a polysaccharide rich in galactose and arabinose along with a small protein fraction [1, 2], which gives its stabilizing power with respect to the coloring substances or tartaric precipitation of bottled wine. It is a gummy exudation from Acacia trees; the products used in enology have two possible botanical origins, i.e. Acacia seyal and Acacia senegal, with different chemical-physical features and consequently different technological effects on wines. The aim of this work is to evaluate the feasibility of discrimination of commercial gums Arabic between their two different sources, on the basis of the absorption of the Fourier Transform Infrared (FT-IR) spectra of their aqueous solutions, in order to propose an extremely rapid and cost-saving method for quality control laboratories.

Influence of deficit irrigation on grapevine cv. “Touriga Nacional” in Douro region: A metabolomic approach

Aim: This study aimed to evaluate whether irrigation of Touriga Nacional in Douro Demarcated Region (DDR) can partly mitigate the negative impacts of ongoing climate change on grapevine yield and quality and its impact on plant metabolism.

USDA national grapevine germplasm resources: new curators, new directions

The National Plant Germplasm System (NPGS) in the United States Department of Agriculture safeguards numerous species. Grapevines are split in two locations: Davis, CA and Geneva, NY. The two germplasms maintain 43 Vitis species with over 4500 genetically unique accessions.