Macrowine 2021
IVES 9 IVES Conference Series 9 Use of pectinolytic yeast in wine fermentations

Use of pectinolytic yeast in wine fermentations

Abstract

The use of pectinolytic enzymes in winemaking is state of the art. These enzymes catalyse the degradation of pectic substances through depolymerization (hydrolases and lyases) and de-esterification. As a result, it supports the extraction of juice and facilitates filtration. It has also been shown in winemaking that the presence of pectinolytic enzymes improves the stability, taste, texture, colour and aroma of products. With regard to enzymes currently applied in winemaking, enzymes derived from filamentous fungi dominate the enzyme industry. Fungal-based pectinolytic enzymes specifically require purification from the culture medium to eliminate unwanted side reactions, which is poorly sustainable. Some non-traditional yeast strains have been reported to exhibit pectinolytic activities. Therefore, the direct use of pectinolytic yeast during wine fermentation process can be an attractive and alternative source for the use of enzymes as input. However, little is known about the effect of non-traditional yeasts with pectinolytic activities on wine fermentation and product quality. In fact, the use of such yeasts can have a very positive effect on the taste complexity and sensory richness of the product. In this study, from 17 different species more than 500 yeast strains were screened for their polygalacturonase activities (PGA). Enzymatic screening was performed in solid rich medium containing 2% polygalacturonic acid, and the activity of PGA+ strains was separately quantified with a microplate colorimetric test developed in this study. The superior pectinolytic yeasts were dominated by Kluyveromyces and Cryptococcus sp.. High pectinase producing Kluyveromyces sp (intrinsic yeast of grape must) was selected for further winemaking experiments. In particular, we investigated the consequences of the use of K. marxianus strains in sequential fermentation with S. cerevisae on fermentation kinetics, aroma profiles and more widely sensory properties of wines. Overall, the use of pectinolytic yeast in wine fermentations has the potential to benefit winemakers. In particular, hydrolysis of grape cell walls by K. marxianus endopolygalacturonase results in the release of compounds found in the skin of the grape that improve the quality of the wine.

DOI:

Publication date: September 24, 2021

Issue: Macrowine 2021

Type: Article

Authors

Mehmet Gazaloglu, Prof Dr. Carole Camasara , Prof Dr. Sylvie Dequin, Prof. Dr. Elke Nevoigt

Sciences for Oenology, INRA, Montpellier SupAgro, Department of Life Sciences and Chemistry, Jacobs University Bremen

Contact the author

Keywords

nonconventional yeast pectinases

Citation

Related articles…

Early defoliation positively enhances bioactive composition of berries with no effect on cuticle characteristics

Leaf removal in the fruit-zone has been employed to improve cluster light exposure and ventilation and therefore increase metabolite accumulation and reduce botrytis incidence in berries. When applied before flowering (early defoliation – ED), it can also decrease cluster compactness and regulate yield in high-yielding varieties. This study aimed to evaluate the impact of ED on the physiology and metabolism of Aragonez (syn. Tempranillo) berries along the ripening period. The experiment was set up in 2013 at a commercial vineyard located in the Lisbon winegrowing region.

RED WINE AGING THROUGH 1H-NMR METABOLOMICS

Premium red wines are often aged in oak barrel. This widespread winemaking process is used, among others, to provide roundness and complexity to the wine. The study of wine evolution during barrel aging is crucial to better ensure control of wine quality.
¹H-NMR has already been proved to be an efficient tool to monitor winemaking process [1]. Indeed, it is a non-destructive technique, it requires a small amount of sample and a short time of analysis, yet it provides clues about several chemical families.

Comparison between the volatile chemical profile of two different blends for PDO “Valpolicella Superiore”

Valpolicella is a famous wine producing region located in the north of Verona close to Garda lake and owes its fame above all to the production of two Protected Designation of Origins (PDOs) withered wines: Amarone and Recioto. Nowadays the production of another PDO, Valpolicella Superiore is gaining more attention by the consumers, increasing the interest of the wineries to improve the quality of this wines

A.O.C. taureau de Camargue

A.O.C. réservée aux viandes fraîches de bovins mâles ou femelles, nés, élevés et abattus dans une aire géographique définie (voir carte)

Taking advantages of innovative chemometric tools to unveil vineyard ecosystem dynamics: look across volatile secondary metabolites

Sustainable viticulture and winemaking continue to represent huge challenges, where a better knowledge about the functional role of biodiversity in the vineyard ecosystems is required.