Macrowine 2021
IVES 9 IVES Conference Series 9 Use of pectinolytic yeast in wine fermentations

Use of pectinolytic yeast in wine fermentations

Abstract

The use of pectinolytic enzymes in winemaking is state of the art. These enzymes catalyse the degradation of pectic substances through depolymerization (hydrolases and lyases) and de-esterification. As a result, it supports the extraction of juice and facilitates filtration. It has also been shown in winemaking that the presence of pectinolytic enzymes improves the stability, taste, texture, colour and aroma of products. With regard to enzymes currently applied in winemaking, enzymes derived from filamentous fungi dominate the enzyme industry. Fungal-based pectinolytic enzymes specifically require purification from the culture medium to eliminate unwanted side reactions, which is poorly sustainable. Some non-traditional yeast strains have been reported to exhibit pectinolytic activities. Therefore, the direct use of pectinolytic yeast during wine fermentation process can be an attractive and alternative source for the use of enzymes as input. However, little is known about the effect of non-traditional yeasts with pectinolytic activities on wine fermentation and product quality. In fact, the use of such yeasts can have a very positive effect on the taste complexity and sensory richness of the product. In this study, from 17 different species more than 500 yeast strains were screened for their polygalacturonase activities (PGA). Enzymatic screening was performed in solid rich medium containing 2% polygalacturonic acid, and the activity of PGA+ strains was separately quantified with a microplate colorimetric test developed in this study. The superior pectinolytic yeasts were dominated by Kluyveromyces and Cryptococcus sp.. High pectinase producing Kluyveromyces sp (intrinsic yeast of grape must) was selected for further winemaking experiments. In particular, we investigated the consequences of the use of K. marxianus strains in sequential fermentation with S. cerevisae on fermentation kinetics, aroma profiles and more widely sensory properties of wines. Overall, the use of pectinolytic yeast in wine fermentations has the potential to benefit winemakers. In particular, hydrolysis of grape cell walls by K. marxianus endopolygalacturonase results in the release of compounds found in the skin of the grape that improve the quality of the wine.

DOI:

Publication date: September 24, 2021

Issue: Macrowine 2021

Type: Article

Authors

Mehmet Gazaloglu, Prof Dr. Carole Camasara , Prof Dr. Sylvie Dequin, Prof. Dr. Elke Nevoigt

Sciences for Oenology, INRA, Montpellier SupAgro, Department of Life Sciences and Chemistry, Jacobs University Bremen

Contact the author

Keywords

nonconventional yeast pectinases

Citation

Related articles…

Soil proximal sensing provides direction in delineating plant water status of ‘crimson seedless’ (Vitis vinifera L.) vineyards

Crimson Seedless’ (Vitis vinifera L.) is a late-ripening, red seedless table grape cultivar with inadequate anthocyanin accumulation and less than ideal berry size issues

Shoot positioning: effect on physiological, vegetative and reproductive parameters

[English version below]

On a étudié durant deux saisons de croissance (2002/2003 et 2003/2004) l’effet de l’orientation vertical des rameaux sur les paramètres physiologiques, végétatifs et reproductifs dans la région de Stellenbosch dans un vignoble du cépage Merlot sur 99 R conduite à espalier et taillé a cordon coursonné. Les vignes étaient espacées 2.7 x 1.5 m. L’irrigation a été appliquée quand la baie avait la dimension d’un pois et a la véraison.

Red wine oxidation: oxygen consumption kinetics and high resolution uplc-ms analysis

Oxygen is playing a major role in wine ageing and conservation. Many chemical oxidation reactions occur but they are difficult to follow due to their slow reaction times

Digitization for automation–A frost management case study

The need to mitigate the yield impact of Spring frosts in vineyards remains a significant challenge around the world.

Atmospheric modeling: a tool to identify locations best suited for vine cultivation. Preliminary results in the Stellenbosch region

The choice of sites for viticulture depends on natural environmental factors, particularly climate, as grapevines have specific climatic requirements for optimum physiological performance and berry quality achievement. In the Stellenbosch wine-producing region, the complex topography and the proximity of the ocean create a variety of topoclimates resulting in different growth conditions for vines within short distances.