Macrowine 2021
IVES 9 IVES Conference Series 9 Use of pectinolytic yeast in wine fermentations

Use of pectinolytic yeast in wine fermentations

Abstract

The use of pectinolytic enzymes in winemaking is state of the art. These enzymes catalyse the degradation of pectic substances through depolymerization (hydrolases and lyases) and de-esterification. As a result, it supports the extraction of juice and facilitates filtration. It has also been shown in winemaking that the presence of pectinolytic enzymes improves the stability, taste, texture, colour and aroma of products. With regard to enzymes currently applied in winemaking, enzymes derived from filamentous fungi dominate the enzyme industry. Fungal-based pectinolytic enzymes specifically require purification from the culture medium to eliminate unwanted side reactions, which is poorly sustainable. Some non-traditional yeast strains have been reported to exhibit pectinolytic activities. Therefore, the direct use of pectinolytic yeast during wine fermentation process can be an attractive and alternative source for the use of enzymes as input. However, little is known about the effect of non-traditional yeasts with pectinolytic activities on wine fermentation and product quality. In fact, the use of such yeasts can have a very positive effect on the taste complexity and sensory richness of the product. In this study, from 17 different species more than 500 yeast strains were screened for their polygalacturonase activities (PGA). Enzymatic screening was performed in solid rich medium containing 2% polygalacturonic acid, and the activity of PGA+ strains was separately quantified with a microplate colorimetric test developed in this study. The superior pectinolytic yeasts were dominated by Kluyveromyces and Cryptococcus sp.. High pectinase producing Kluyveromyces sp (intrinsic yeast of grape must) was selected for further winemaking experiments. In particular, we investigated the consequences of the use of K. marxianus strains in sequential fermentation with S. cerevisae on fermentation kinetics, aroma profiles and more widely sensory properties of wines. Overall, the use of pectinolytic yeast in wine fermentations has the potential to benefit winemakers. In particular, hydrolysis of grape cell walls by K. marxianus endopolygalacturonase results in the release of compounds found in the skin of the grape that improve the quality of the wine.

DOI:

Publication date: September 24, 2021

Issue: Macrowine 2021

Type: Article

Authors

Mehmet Gazaloglu, Prof Dr. Carole Camasara , Prof Dr. Sylvie Dequin, Prof. Dr. Elke Nevoigt

Sciences for Oenology, INRA, Montpellier SupAgro, Department of Life Sciences and Chemistry, Jacobs University Bremen

Contact the author

Keywords

nonconventional yeast pectinases

Citation

Related articles…

Viti-Tunnel, an automatically removable protection against diseases, frost and hail, a way to drastically reduce the use of pesticides

Viti-tunnel®, une innovation imaginée pour répondre à deux des objectifs majeurs des viticulteurs : 1.la sécurisation de la vendange : viti-tunnel® permet de protéger les vignobles des pertes de récolte dues aux maladies, au gel et à la grêle. 2.la réduction des pesticides : viti-tunnel® permet de réduire de plus de 90 %, le recours aux produits phytosanitaires et aux passages de pulvérisateurs, et ce, en toute sécurité pour la vendange. Un dispositif automatisé pour protéger les vignes viti-tunnel® est un dispositif de mise à l’abri automatique des rangs de vigne pendant les pluies et les évènements climatiques extrêmes.

Pedological factor influence on the viticultural zoning of the Aljarafe Alto (Seville, Spain)

Aljarafe Alto est une petite zone naturelle dans le département de Séville (Espagne), où le cépage autochtone cultivé est le Palomino Garrido Fino.

Mining terroir influence on bioactive polyphenols from grape stems: A correlation-network-driven approach to spatialize metabolomics data

In viticulture, the concept of terroir is often used to enlighten the environmental-based typicity of grapevines grown in a local area however its scientific basis remains under debate. Grape polyphenols as key player of the plant defense system enables adaptation to environmental changes and so far, form a unique metabolic component to investigate the terroir influence.

Impact of non-fruity compounds on red wines fruity aromatic expression: the role of higher alcohols

A part, at least, of the fruity aroma of red wines is the consequence of perceptive interactions between various aromatic compounds, particularly ethyl esters and acetates, which may contribute to the perception of fruity aromas, specifically thanks to synergistic effects.1,2 The question of the indirect impact of non-fruity compounds on this particular aromatic expression has not yet been widely investigated. Among these compounds higher alcohols (HA) represent the main group, from a quantitative standpoint, of volatiles in many alcoholic beverages. Moreover, some bibliographic data suggested their contribution to the aromatic complexity by either increasing or masking flavors of wine, depending of their concentrations.

Valpolicella chemical pattern of aroma ‘terroir’ evolution during aging

Valpolicella is an Italian region famous for the production of high quality red wines. Wines produced in its different sub-regions are believed to be aromatically different, as confirmed by recent studies in our laboratory. Aging is a very common practice in Valpolicella and it is required by the appellation regulation for periods up to four years. The aim of this study was to investigate the evolution, during aging, of volatile chemical composition of Valpolicella wines obtained from grapes harvested in different sub-regions during different vintages.