Macrowine 2021
IVES 9 IVES Conference Series 9 The relationship between enzyme treatment and polysaccharide extraction in wine making, and subsequent sensory effects in Cabernet Sauvignon wines

The relationship between enzyme treatment and polysaccharide extraction in wine making, and subsequent sensory effects in Cabernet Sauvignon wines

Abstract

AIM: To determine the effect of both ripeness and enzyme maceration on the astringency and bitterness perception of Cabernet Sauvignon winesRecent work has contributed to a more detailed understanding of the grape cell wall deconstruction process from ripening through crushing and fermentation, providing a better understanding of what role polysaccharides play in post-harvest fermentation of grapes(1,2). Current research on glycomics in red wine making suggest polysaccharides are important sensory impact molecules (3–6).

METHODS: Our experimental system harvests Cabernet Sauvignon grapes at three different ripeness levels and makes wine both with and without enzyme treatment. Using glycan-array technology (Comprehensive Microarray Polymer Profiling – CoMPP) as an analytical tool, we explore comparative levels of polysaccharides derived from cell walls that pass through the fermentation process to wines. These results are confirmed using GC-MS analysis of hydrolyzed polysaccharides, in addition to analysis of extracted tannins and polyphenols. Wines are submitted for sensory analysis to test astringency and bitterness perception after alcohol level equalization, providing a novel look at emzyme macerations sensory effect, focusing on polysaccharide levels in wine.

RESULTS/DISCUSSION: Data shows ripeness has a more limited effect than expected on polysaccharide profiles in finished wine, but enzyme addition causes a marked decrease in soluble polysaccharides. An increase in polymeric pigments and tannins is noted with enzyme use. Sensory testing of these wines established a relationship between perceived astringency and polysaccharide, but also shows the traditionally accepted relationship between phenol content of red wines and perceived astringency is more complicated.

CONCLUSIONS:

Enzyme maceration has an effect on perceived astringency in finished wines, but does not affect bitterness. Ripeness has a limited effect on polysaccharide extraction, but no significant differences in wine astringency. In this study, bitterness was not affected by ripeness nor enzyme maceration.

DOI:

Publication date: September 24, 2021

Issue: Macrowine 2021

Type: Article

Authors

Brock Kuhlman, Bodil JØRGENSEN,   José L. ALEIXANDRE TUDO , John P. MOORE,

South African Grape and Wine Research Institute, Stellenbosch University, Stellenbosch, South Africa, Plant Glycobiology, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark , Universitat Politecnica de Valencia, Instituto de Ingenieria de Alimentos para el Desarrollo (IIAD), Departamento de Tecnología de Alimentos and Stellenbosch University, South African Grape and Wine Research Institute (SAGWRI), Department of Viticulture and Oenology  Wessel DU TOIT, Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch, South Africa ,  Grape and Wine Research Institute, Stellenbosch University, Stellenbosch, South Africa

Contact the author

Keywords

enzyme maceration, astringency, polysaccharide extraction, polyphenolic extraction, bitterness

Citation

Related articles…

Evaluation of viticultural measures to delay ripening of Vitis vinifera ‘Grüner Veltliner’

Context and purpose of the study. `Grüner Veltliner´ is the most important Austrian white quality wine variety, which is mainly used to produce primary fruity wines.

Investigating biotic and abiotic stress responses in grafted grapevine cultivars: A comparative study of Cabernet-Sauvignon and Cabernet Volos on M4 rootstock

When grapevine plants are transplanted into already established vineyards, they face multiple challenges, including adverse climate, heavy metal accumulation from agronomic practices [1], and pressure from highly adapted pathogens [2].

Use of chitosan as a secondary antioxidant in juices and wines

Chitosan is a polysaccharide produced from the deacetylation of chitin extracted from crustaceous and fungi. In winemaking chitosan is mainly used in the clarification of grape juice and wine, stabilization of white wines, removal of metals and to prevent wine spoilage by undesired microorganisms. The addition of chitosan to model wine systems was able to retard browning, reduce levels of metallic ions (Fe and Cu) and to protect varietal thiols due to its antiradical activity1. The present experiment was planned in order to evaluate the use of chitosan as a secondary antioxidant at three different stages of Sauvignon blanc fermentation and winemaking. Sauvignon blanc juices from three different locations were obtained at a commercial winery in Marlborough, New Zealand. One lots of grapes was collected from a receival bin and pressed into juice with a water-bag press, and a further juice sample was collected from a commercial pressing operation. Chitosan (1 g/L, low molecular weight, 75 – 85% deacetylated) was added to the juice after pressing, after cold settling, after fermentation, or at all these stages. Controls without any chitosan additions were also prepared.

Use of Lactiplantibacillus plantarum (ML PrimeTm) to improve malolactic fermentation of catarratto wine subjected to long post-fermentative maceration.

AIM: Lactiplantibacillus plantarum species is wordwide used as starter for malolactic fermentation [1,2]. For the first time, in the present study, the use of L. plantarum (ML PrimeTM, Lallemand wine) to produce white wines with post-fermentative maceration extended until 60 days has been investigated.

Rapid measurement of phenolic quality as a useful tool for viticultural zoning

Un des principaux objectifs du zonage viticole est l’individuation des zones plus indiquées à la production de vins de haute qualité en relation aux cépages. Ceperrlant depuis beaucqup d’années, entre les paramètres de qualité du raisin, on n’a pas considéré les substances phénoliques par effet de l!l difficulté d’analyse en temps rapides.