Macrowine 2021
IVES 9 IVES Conference Series 9 Evaluation of the sensory profile of doc douro red wines through sensory traditional single-point techniques and temporal dominance methods

Evaluation of the sensory profile of doc douro red wines through sensory traditional single-point techniques and temporal dominance methods

Abstract

No other agricultural product has a stronger relationship with the soil than wine. This study aimed to characterize the sensory profile of red wines from the Douro Demarcated Region (RDD) certified as DOC Douro, through the application of Quantitative Descriptive Analysis (QDA®) and Temporal Dominance of Sensations (TDS) sensory methods. QDA® provides a complete word description for all a product’s sensory properties. The TDS, which is relatively recent in the sensory field [1], allows to evaluation and description of the evolution of the dominant sensory perceptions during the tasting of a food product.Eighteen commercial wines from different producers were evaluated, six different samples representing each of the three sub-regions of the RDD. The panel had eighteen tasters, divided into trained and specialists. The statistical treatment was done using tools such as CATPCA and SEM for ADQ®, MANOVA, and ANOVA for TDS.The results showed that, in both methods, the wines from the three sub-regions have profiles with very corresponding characteristics in visual, olfactory, and taste aspects. The results also pointed to a more expressive relationship to the characteristics of the sub-regions and Touriga Franca, Touriga Nacional, and Tinta Roriz varieties than to the oenological practices. The olfactory profile was characterized by aromatic Fruity, Floral, and Balsamic notes, on the other hand, the taste was highlighted by Astringency and Acidity and again Fruity as the main mouth-aroma. In the second-order factorial analysis of SEM, carried out on ADQ®, the taste attributes showed greater weight in all models [2], reinforcing the results of the CATPCA [3], where the analyzes pointed out the taste attributes as those with the greatest contribution to the characterization of the sensory profile of wines. The integrated use of CATPCA and SEM techniques proved to be robust. As for TDS, the expert tasters were at ease in carrying out the evaluations, both concerning the suggested evaluation protocol, as well as the interface of the data acquisition software. Moreover, the use of MANOVA followed by ANOVA revealed statistically significant differences for the highest rate of maximum dominance. The Factor Analysis indicated homogeneity of the panels, presenting high factor weights. For trained tasters, the factor explains 89.716% of the total variance, for experts, 92.163%. The value of individual commonality is high, revealing that the component is adequate to describe the latent factorial structure among the tasters.

DOI:

Publication date: September 24, 2021

Issue: Macrowine 2021

Type: Article

Authors

Alice Vilela, Eduardo, AMORIM, Elisete, CORREIA

Chemistry Research Center (CQ-VR), Dept. of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal*-Enology, and Viticulture Master Student, Dept. of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal.- Center for Computational and Stochastic Mathematics (CEMAT), Dep. of Mathematics, IST-UL, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal.

Contact the author

Keywords

sensory profile, qda, tds, wine, doc douro

Citation

Related articles…

Measurements of the oxygen dissolved in white wines elaborated in barrels without to open the bung of the barrels

Bases on oxoluminescence, we have developed an innovative device for measuring dissolved oxygen in wines in barrels without opening the bung. This system is directly inserted into the wood during the barrel elaboration and can be positioned at different locations of the barrel (the head, the hull …). During two successive vintages we have used this device notably to follow the oxygen dissolved of whites wines elaborated in barrels. This allowed us initially to monitor the oxygen levels of the harvest to bottling the whole elaboration process in barrels of white wines without using techniques of measurement suitable to modify the real values in wines (opening the bung to plunge an oximeter).

MODELLING THE AGEING POTENTIAL OF SYRAH RED WINES BY ACCELERATED AGEING TESTS: INFLUENCE OF ANTIOXIDANT ASSAYS AND PHENOLIC COMPOSITION

Red wine ageing is an important step in the red wine evolution and impacts its chemical and sensory characteristics through many chemicals and physico-chemical reactions. The kinetics of these evolutions depend on the wine studied and influence the wine ageing potential. Generally, high quality red wines require a longer period of bottle ageing before consumption¹. The ageing potential is an impor-tant parameter for wine quality and is related to the capacity of a wine to undergo oxidation over time². Phenolic compounds which are ones of the main substrates for oxidation can then potentially modulate ageing potential³.

A new winemaking technology: fermentation, aging and bottling without added additives and preservatives

Auric infinity Technology introduces three new patented products designated for fermentation, aging and bottling without added additives and preservatives that have never been used in the winemaking industry.

NEW METHOD FOR THE QUANTIFICATION OF CONDENSED TANNINS AND OTHER WINE PHENOLIC COMPOUNDS USING THE AUTOMATED BIOSYSTEMS SPICA ANALIZER

Wine phenolic compounds are important secondary metabolites in enology due to their antioxidant and nutraceutical properties, and their role in the development of color, taste, and protection of wine from oxidation and spoilage. Tannins are valuable phenolic compounds that contribute significantly to these wine properties, especially in mouthfeel characteristics; however, tannin determination remains a significant challenge, with manual and time-consuming methods or complex methodologies. The purpose of this study is to propose a novel method for quantifying condensed tannins in finished wine products.

Impact of aging on dimethyl sulfide (DMS) in Corvina and Corvinone wines

Dimethyl sulfide (DMS) is a low molecular weight sulfur compound produced in wine during aging by the chemical degradation of S-Methyl-L-methionine (SMM). Investigating the aromatic profile of Amarone commercial wines from different wineries, it was found that DMS presented a high variation in concentration across wine samples ranging from 2.88 to 64.34 μg/L, which potentially can