Macrowine 2021
IVES 9 IVES Conference Series 9 Evaluation of the sensory profile of doc douro red wines through sensory traditional single-point techniques and temporal dominance methods

Evaluation of the sensory profile of doc douro red wines through sensory traditional single-point techniques and temporal dominance methods

Abstract

No other agricultural product has a stronger relationship with the soil than wine. This study aimed to characterize the sensory profile of red wines from the Douro Demarcated Region (RDD) certified as DOC Douro, through the application of Quantitative Descriptive Analysis (QDA®) and Temporal Dominance of Sensations (TDS) sensory methods. QDA® provides a complete word description for all a product’s sensory properties. The TDS, which is relatively recent in the sensory field [1], allows to evaluation and description of the evolution of the dominant sensory perceptions during the tasting of a food product.Eighteen commercial wines from different producers were evaluated, six different samples representing each of the three sub-regions of the RDD. The panel had eighteen tasters, divided into trained and specialists. The statistical treatment was done using tools such as CATPCA and SEM for ADQ®, MANOVA, and ANOVA for TDS.The results showed that, in both methods, the wines from the three sub-regions have profiles with very corresponding characteristics in visual, olfactory, and taste aspects. The results also pointed to a more expressive relationship to the characteristics of the sub-regions and Touriga Franca, Touriga Nacional, and Tinta Roriz varieties than to the oenological practices. The olfactory profile was characterized by aromatic Fruity, Floral, and Balsamic notes, on the other hand, the taste was highlighted by Astringency and Acidity and again Fruity as the main mouth-aroma. In the second-order factorial analysis of SEM, carried out on ADQ®, the taste attributes showed greater weight in all models [2], reinforcing the results of the CATPCA [3], where the analyzes pointed out the taste attributes as those with the greatest contribution to the characterization of the sensory profile of wines. The integrated use of CATPCA and SEM techniques proved to be robust. As for TDS, the expert tasters were at ease in carrying out the evaluations, both concerning the suggested evaluation protocol, as well as the interface of the data acquisition software. Moreover, the use of MANOVA followed by ANOVA revealed statistically significant differences for the highest rate of maximum dominance. The Factor Analysis indicated homogeneity of the panels, presenting high factor weights. For trained tasters, the factor explains 89.716% of the total variance, for experts, 92.163%. The value of individual commonality is high, revealing that the component is adequate to describe the latent factorial structure among the tasters.

DOI:

Publication date: September 24, 2021

Issue: Macrowine 2021

Type: Article

Authors

Alice Vilela, Eduardo, AMORIM, Elisete, CORREIA

Chemistry Research Center (CQ-VR), Dept. of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal*-Enology, and Viticulture Master Student, Dept. of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal.- Center for Computational and Stochastic Mathematics (CEMAT), Dep. of Mathematics, IST-UL, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal.

Contact the author

Keywords

sensory profile, qda, tds, wine, doc douro

Citation

Related articles…

Impact of sulfur compounds to the antioxidant stability of white wines

The chemical mechanisms involved in oxidation/reduction potential of wine during winemaking and aging are affecting its color, aroma and taste. Chemical oxidation is one of the major causes of development of off-flavors during ageing1. Thus, the chemical changes in wine during storage should be controlled to ensure the sensory quality of the product and avoid consumer rejection that will compromise the economic value of the product. The 1-hydroxyethyl radical has been recognized as the key radical intermediate in the oxidative reactions in wine2. Based on the kinetic study of POBN-1-hydroxyethyl spin adduct formation in wines initiated via the Fenton reaction, a novel tool was recently developed in our laboratory to quantify the resistance of wines against oxidation3.

Thermal conditions during the grape ripening period in viticulture geoclimate. Cool night index and thermal amplitude

Le régime thermique en période de maturation du raisin est l’une des variables déterminantes de la coloration du raisin et de la richesse en arômes, anthocyanes et polyphénols des vins.

Control of bacterial growth in carbonic maceration winemaking through yeast inoculation

Controlling the development of the bacterial population during the winemaking process is essential for obtaining correct wines[1]. Carbonic Maceration (CM) wines are recognised as high-quality young wines. However, due to its particularities, CM winemaking implies a higher risk of bacterial growth: lower SO2 levels, enrichment of the must in nutrients, oxygen trapped between the clusters… Therefore, wines produced by CM have slightly higher volatile acidity values than those produced by the destemming/crushing method[2].

Characterization of the thiol aromatic potential of a new resistant grape variety: Floreal

Aims: Due to climate change and the desire to decrease enological inputs (organic farming), the vineyard has to be modified and the selection of new resistant grape varieties as an alternative is researched intensively today. From January 2018, four new grape varieties that are resistant against mildew and odium have been added to the official

Interpreting wine aroma: from aroma volatiles to the aromatic perception

Wine contains so many odorants that all its olfaction-related perceptions are, inevitably, the result of the interaction between many odorants.