Macrowine 2021
IVES 9 IVES Conference Series 9 LC-MS based metabolomics discriminates premium from varietal chilean Cabernet Sauvignon cv. Wines

LC-MS based metabolomics discriminates premium from varietal chilean Cabernet Sauvignon cv. Wines

Abstract

Aim of the study was to investigate the metabolomic differences between Chilean Cabernet Sauvignon wines, divided according to their quality in two main groups: “Varietal” and “Premium”, and to point out metabolites tentative markers of their chemical signature and sensorial quality. Initially, 150 (50 x 3 biological replicates) experimental wines were produced by the same semi-industrial process, which covered 8 different Chilean valleys. The wine classification made by experts, divided the wines into two major groups (“Varietal” and “Premium”) and four subgroups (two for each major group). All the samples were analyzed according to a robust LC-MS based untargeted work-flow (Arapitsas et al 2018), and the proposed minimum reporting standards for chemical analysis of the Metabolomics Standards Initiative (Sumner et al 2007). The produced big-dataset was based on 7633 features for ESI- mode analysis and 9258 for ESI+ mode. After the quality control of the data, were found 150 tentative markers. The annotation of the markers was achieved by using the internal library, external databases and literature information. Between the Chilean Cabernet Sauvignon quality tentative markers were annotated N-compounds (e.g. peptides), stilbenoids, flavanols, anthocyanins and sulfonated compounds. In conclusion, this study allowed us to find metabolomic pathways and chemical reactions, and therefore propose new hypothesis, which could open new frontiers for the understanding of the Chilean Cabernet Sauvignon quality and terroir effect and provide new tools for the enology of precision in Chile.

DOI:

Publication date: September 24, 2021

Issue: Macrowine 2021

Type: Article

Authors

Vania Sáez,  Álvaro González, Panagiotis Arapitsas. 

Fondazione Edmund Mach.,Doreen Schober. Center for Research, and Innovation, Chile.  Fondazione Edmund Mach, Italy.

Contact the author

Keywords

cabernet sauvignon; quality; metabolomics; stilbenoids; anthocyanins; peptides; terroir

Citation

Related articles…

Ugni blanc berry and wine composition impacted by thirteen rootstocks

The Cognac region is expanding, driven by the success of its renowned brandy and the demand for high grape yields to ensure a steady supply of base wine for distillation. Ugni blanc, the most widely planted grape variety, relies on rootstocks for soil and climate adaptation, providing essential nutrient supplies to the scion. Understanding the impact of rootstocks on key berry components, such as sugars and nitrogen compounds, is crucial. These compounds serve as primary precursors for the production of fermentative aroma metabolites, which, in turn, act as quality indicators for eau-de-vie.

Metabolomic profiling of heat-stressed grape berries 

The projected rise in mean air temperatures together with the frequency, intensity, and length of heat waves in many wine-growing regions worldwide will deeply impact grape berry development and quality. Several studies have been conducted and a large set of molecular data was produced to better understand the impact of high temperatures on grape berry development and metabolism[1]. According to these data, it is highly likely that the metabolomic dynamics could be strongly modulated by heat stress (HS).

Influence of cover crops in a Tempranillo vineyard grown under the edaphoclimatic conditions of the Appellation of Origin Rueda

The way to manage the vineyard soils has certainly changed in Spain during the last years. Traditionally, the vineyards were tilled, but this growing technique has been replaced in some vineyards by the bare soil with herbicide

Water potential in cv. Verdejo: response at different day times to the variation of water regime in the d.o. rueda (Spain)

Irrigation management is a critical aspect in grapevine cultivation to regularize grape production and quality in areas of clear water limitation.

Bioprotective non-Saccharomyces yeast as an alternative to sulfites for the winemaking process

Sulfur dioxide (SO2) is used in winemaking due of its antioxidant, antioxydasic and antiseptic properties. Excessive amount of SO2 can negatively impact wine sensory perception and be detrimental for health. Agri-food industries are more transparent towards consumers concerning addition of sulfites, and oenology is no exception in this clairvoyance. As a consequence, the increase of consumers preference for wine with low or absent of sulfites addition is notorious. In this context, the impact of low/zero sulfites winemaking process on the microbial community should be evaluated. Moreover, microbial agents corresponding to bioprotective cultures represent a growing interest as an alternative to sulfites preservation in the early stages of vinification. However, scientific studies conducted to demonstrate their real effect are almost rare.