Macrowine 2021
IVES 9 IVES Conference Series 9 LC-MS based metabolomics discriminates premium from varietal chilean Cabernet Sauvignon cv. Wines

LC-MS based metabolomics discriminates premium from varietal chilean Cabernet Sauvignon cv. Wines

Abstract

Aim of the study was to investigate the metabolomic differences between Chilean Cabernet Sauvignon wines, divided according to their quality in two main groups: “Varietal” and “Premium”, and to point out metabolites tentative markers of their chemical signature and sensorial quality. Initially, 150 (50 x 3 biological replicates) experimental wines were produced by the same semi-industrial process, which covered 8 different Chilean valleys. The wine classification made by experts, divided the wines into two major groups (“Varietal” and “Premium”) and four subgroups (two for each major group). All the samples were analyzed according to a robust LC-MS based untargeted work-flow (Arapitsas et al 2018), and the proposed minimum reporting standards for chemical analysis of the Metabolomics Standards Initiative (Sumner et al 2007). The produced big-dataset was based on 7633 features for ESI- mode analysis and 9258 for ESI+ mode. After the quality control of the data, were found 150 tentative markers. The annotation of the markers was achieved by using the internal library, external databases and literature information. Between the Chilean Cabernet Sauvignon quality tentative markers were annotated N-compounds (e.g. peptides), stilbenoids, flavanols, anthocyanins and sulfonated compounds. In conclusion, this study allowed us to find metabolomic pathways and chemical reactions, and therefore propose new hypothesis, which could open new frontiers for the understanding of the Chilean Cabernet Sauvignon quality and terroir effect and provide new tools for the enology of precision in Chile.

DOI:

Publication date: September 24, 2021

Issue: Macrowine 2021

Type: Article

Authors

Vania Sáez,  Álvaro González, Panagiotis Arapitsas. 

Fondazione Edmund Mach.,Doreen Schober. Center for Research, and Innovation, Chile.  Fondazione Edmund Mach, Italy.

Contact the author

Keywords

cabernet sauvignon; quality; metabolomics; stilbenoids; anthocyanins; peptides; terroir

Citation

Related articles…

Rootstock x environment interaction shapes shoot system phenotypic variation in grafted ‘Chambourcin’

Recent advances in phenomics and transcriptomics have the enhanced capacity for understanding how clonally propagated perennial crops like grapevines respond to their environments seasonally and over the course of multiple years. Because most grapevines are grafted, above-ground grapevine traits reflect scion genotype and its interaction with the local environment. In addition, traits expressed by the scion reflect rootstock genotype and how that rootstock is interacting with its environment seasonally and across years. To investigate rootstock x environment interaction on shoot systems in grafted grapevines we characterized comprehensive phenotypic variation in an experimental vineyard in Mount Vernon, Missouri, USA where the grapevine cultivar ‘Chambourcin’ is growing on its own roots and is grafted to three different rootstocks (‘1103P’, ‘3309C’, ‘SO4’).

Impact of the pre-fermentative addition of enological adjuvants on the development of UTA in wines

During alcoholic fermentation and wine aging, indole-3-acetic acid (IAA) can degrade into 2-aminoacetophenone (AAP). The presence of reasonable amount of AAP in wines is regarded as the main cause of untypical ageing

Organic mulches improve vine vigour, yield and physiological response in a semi-arid region

Recycled organic mulch within the row in vineyard floor management has become an interesting ecological strategy to adapt the crop to climate change consequences in semi-arid regions.
This study aimed to assess the impact of three recycled organic mulches [straw (STR), grape pruning debris (GPD), and spent mushroom compost (SMC)] and two conventional soil management practices [herbicide (HERB) and under-row tillage (TILL)] on vegetative vigour (NDVI), production (kg/plant), and physiological parameters (δ13C in grapes and leaf gas exchange during four grapevine phenology stages). Additionally, temperature and water soil parameters were collected at three soil depths. Data was collected during the 2021 and 2022 grapevine growing seasons in La Rioja, Spain.

Discovering the process of noble rot: fungal ecology of grape berries during the noble rot transformation in different vineyards of the Tokaj wine region

Botrytis cinerea, a well-known grapevine pathogen, has more than 1200 host plants causing grey rot in grapevine berries. However, it can also result in a desirable phenomenon called noble rot under specific microclimate conditions. An extraordinary demonstration of this natural process can be observed in the creation of aszú wines within Hungary’s Tokaj wine region. Beside B. cinerea other fungi and yeasts are involved in the secondary metabolic development of the grape berry which contributes to the sensory and analytical characterization of noble rot wines.

Reduction of herbaceous aromas by wine lactic acid bacteria mediated degradation of volatile aldehydes

Consumers typically prefer wines with floral and fruity aromas over those presenting green-pepper, vegetal or herbaceous notes. Pyrazines have been identified as causatives for herbaceous notes in wines, especially Bordeaux reds. However, pyrazines are not universally responsible for herbaceousness, and several other wine volatile compounds are known to produce distinct vegetal/herbaceous aromas in wines. Specifically, volatile aldehydes elicit sensations of herbaceousness or grassiness and have been described in wines well above their perception thresholds.