Macrowine 2021
IVES 9 IVES Conference Series 9 LC-MS based metabolomics discriminates premium from varietal chilean Cabernet Sauvignon cv. Wines

LC-MS based metabolomics discriminates premium from varietal chilean Cabernet Sauvignon cv. Wines

Abstract

Aim of the study was to investigate the metabolomic differences between Chilean Cabernet Sauvignon wines, divided according to their quality in two main groups: “Varietal” and “Premium”, and to point out metabolites tentative markers of their chemical signature and sensorial quality. Initially, 150 (50 x 3 biological replicates) experimental wines were produced by the same semi-industrial process, which covered 8 different Chilean valleys. The wine classification made by experts, divided the wines into two major groups (“Varietal” and “Premium”) and four subgroups (two for each major group). All the samples were analyzed according to a robust LC-MS based untargeted work-flow (Arapitsas et al 2018), and the proposed minimum reporting standards for chemical analysis of the Metabolomics Standards Initiative (Sumner et al 2007). The produced big-dataset was based on 7633 features for ESI- mode analysis and 9258 for ESI+ mode. After the quality control of the data, were found 150 tentative markers. The annotation of the markers was achieved by using the internal library, external databases and literature information. Between the Chilean Cabernet Sauvignon quality tentative markers were annotated N-compounds (e.g. peptides), stilbenoids, flavanols, anthocyanins and sulfonated compounds. In conclusion, this study allowed us to find metabolomic pathways and chemical reactions, and therefore propose new hypothesis, which could open new frontiers for the understanding of the Chilean Cabernet Sauvignon quality and terroir effect and provide new tools for the enology of precision in Chile.

DOI:

Publication date: September 24, 2021

Issue: Macrowine 2021

Type: Article

Authors

Vania Sáez,  Álvaro González, Panagiotis Arapitsas. 

Fondazione Edmund Mach.,Doreen Schober. Center for Research, and Innovation, Chile.  Fondazione Edmund Mach, Italy.

Contact the author

Keywords

cabernet sauvignon; quality; metabolomics; stilbenoids; anthocyanins; peptides; terroir

Citation

Related articles…

Sustaining wine identity through intra-varietal diversification

With contemporary climate change, cultivated Vitis vinifera L. is at risk as climate is a critical component in defining ecologically fitted plant materiel. While winegrowers can draw on the rich diversity among grapevine varieties to limit expected impacts (Morales-Castilla et al., 2020), replacing a signature variety that has created a sense of local distinctiveness may lead to several challenges. In order to sustain wine identity in uncertain climate outcomes, the study of intra-varietal diversity is important to reflect the adaptive and evolutionary potential of current cultivated varieties. The aim of this ongoing study is to understand to what extent can intra-varietal diversity be a climate change adaptation solution. With a focus on early (Sauvignon blanc, Riesling, Grolleau, Pinot noir) to moderate late (Chenin, Petit Verdot, Cabernet franc) ripening varieties, data was collected for flowering and veraison for the various studied accessions (from conservatory plots) and clones. For these phenological growing stages, heat requirements were established using nearby weather stations (adapted from the GFV model, Parker et al., 2013) and model performances were verified. Climate change projections were then integrated to predict the future behaviour of the intra-varietal diversity. Study findings highlight the strong phenotypic diversity of studied varieties and the importance of diversification to enhance climate change resilience. While model performances may require improvements, this study is the first step towards quantifying heat requirements of different clones and how they can provide adaptation solutions for winegrowers to sustain local wine identity in a global changing climate. As genetic diversity is an ongoing process through point mutations and epigenetic adaptations, perspective work is to explore clonal data from a wide variety of geographic locations.

Chenin Blanc Old Vine character: evaluating a typicality concept by data mining experts’ reviews and producers’ tasting notes

Concepts such as typicality are difficult to demonstrate using the limited set of samples that can be subjected to sensory evaluation. This is due both to the complexity of the concept and to the limitations of traditional sensory evaluation (number of samples per session, panel fatigue, the need for multiple sessions and methods, etc.). On the other hand, there is a large amount of data already available, accumulated through many years of consistent evaluation. These data are held in repositories (such as Platter’s Wine Guide in the case of South Africa Wine, wineonaplatter.com) and in technical notes provided by the producers.

Origin of unpleasant smelling sulphur compounds during wine fermentation

The wine sector is undergoing considerable transformation, particularly as a result of climate change and increasing consumer expectations for quality products, in a globalised and increasingly competitive market.

Pre-breeding for developing heat stress resilient grape varieties to ensure yield 

Climate change has numerous detrimental consequences and creates new challenges for viticulture around the world. Transitory or constant high temperatures frequently associated with an excess of sunlight (UV) can cause a variety of physiological disorders, such as sunburn. Diverse environmental factors and the plant’s response mechanisms to stress determine the symptoms. Grapevine berry sunburn leads to a drastic reduction in yield, and may eventually decline berry quality. Consequently, this poses a significant risk to the winegrowers.

Evaluating analytical methods for quantification of glutathione in grape juice and wine

AIM: Glutathione (GSH) is a powerful natural antioxidant, considered as a promising molecule against oxidative damage of aroma during winemaking and storage.