Macrowine 2021
IVES 9 IVES Conference Series 9 How to improve the mouthfeel of wines obtained by excessive tannin extraction

How to improve the mouthfeel of wines obtained by excessive tannin extraction

Abstract

AIM: Red wines felt as astringent and bitter generally show high content of tannins due to grape phenolic compounds’ extraction in the maceration process.  Among different enological practices, mannoproteins have been shown to improve the mouthfeel of red wines (1) and the color (2,3). In this work, we evaluated the effect of mannoproteins on the mouthfeel profile of Sangiovese wines obtained by excessive tannin extraction.

METHODS: Extended maceration (E), marc press (P), and free-run (F) wines were aged three and six months in contact with three different mannoproteins (MP, MS, MF) at 20 g/hL. Phenolic analyses comprised: total anthocyanins, low and high molecular weight proanthocyanidins. The color was studied by color parameters, CIELab coordinates, and pigmented polymers. The wines’ sensory characteristics: astringency subqualities (silk, velvet, dry, corduroy, adhesive, aggressive, hard, soft, mouth-coat, rich, full-body, green, grainy, satin, pucker, persistent), taste, aroma, and odor, were evaluated.

RESULTS: Pigmented polymer formation was differently promoted in all wines. Multi Factorial Analysis revealed significant correlations between subqualities, color parameters, and phenolic compounds for each wine. Some mouthfeel attributes seem to depend on the equilibrium between anthocyanins and pigmented polymers and then on anthocyanins and proanthocyanidins ratio. CONCLUSIONS: Mannoproteins showed a different effect on mouthfeel depending on the wine. The choice of treatment for extended maceration, free-run, and marc press wines can also be made considering results on color stability. The aging on mannoproteins can represent a way to improve the mouthfeel of wines highly rich in tannins.

DOI:

Publication date: September 24, 2021

Issue: Macrowine 2021

Type: Article

Authors

Alessandra Rinaldi, Alliette GONZALEZ, Luigi MOIO, Angelita GAMBUTI

Department of Agricultural Sciences, University of Napoli “Federico II”- Enology Sciences Section, Viale Italia, 83100, Avellino, Italy Biolaffort, 126 Quai de la Souys, 33100 Bordeaux, France.

Contact the author

Keywords

mannoprotein, astringency, subquality, maceration, color, sensory analysis

Citation

Related articles…

Uncovering the influence of vineyard management on fungal community structure and functional diversity within above-ground compartments

In viticulture, microbial communities – particularly fungi – play a vital role in plant health, disease management, and grape quality.

Molecularly imprinted polymers: an innovative strategy for harvesting polyphenoles from grape seed extracts

Multiple sclerosis (MS) is a multifactorial autoimmune disease associating demyelination and axonal degeneration developing in young adults and affecting 2–3 million people worldwide. Plant polyphenols endowed with many therapeutic benefits associated with anti-inflammatory and antioxidant properties represent highly interesting new potential therapeutic strategies. We recently showed the safety and high efficiency of grape seed extract (GSE), a complex mixture of polyphenolics compounds comprising notably flavonoids and proanthocyanidins, in an experimental autoimmune encephalomyelitis (EAE) mouse model of MS.

Integrated approach to grape stalks valorization: sustainable recovery of bioactive compounds and biofuel production

Grape stalks are a byproduct of the winemaking process and represent a valuable and inexpensive source of bioactive compounds. While their direct use in whole bunch fermentation is known, the majority of grape stalks are discarded, posing environmental and economic challenges.

On the losses of dissolved CO2 from laser-etched champagne glasses under standard tasting conditions

Under standard champagne tasting conditions, the complex interplay between the level of dissolved CO2 found in champagne, its temperature, the glass shape, and the bubbling rate, definitely impacts champagne tasting by modifying the neuro-physico-chemical mechanisms responsible for aroma release and flavor perception. Based on theoretical principles combining heterogeneous bubble nucleation, ascending bubble dynamics and mass transfer equations, a global model is proposed (depending on various parameters of both the wine and the glass itself), which quantitatively provides the progressive losses of dissolved CO2 from laser-etched champagne glasses.

Modeling the suitability of Pinot Noir in Oregon’s Willamette Valley in a changing climate

Air temperature is the key driver of grapevine phenology and a significant environmental factor impacting yield and quality for a winegrape growing region. In this study the optimal downscaled CMIP5 ensemble for computing thegrowing season average temperature (GST) viticulture climate classification index was determined to spatially compute on a decadal basis predictions of the GST climate index and the grapevine sugar ripeness (GSR) model for Pinot Noir throughout the Willamette Valley (WV) American Viticultural Area (AVA). Forecasts for average temperature and a 220 g/L target sugar concentration level were computed using daily Localized Constructed Analogs (LOCA) downscaled CMIP5 historic and Representative Concentration Pathways (RCP) future climate projections of minimum and maximum daily temperature. We explore spatiotemporal trends of the GST climate classification index and Pinot Noir specific applications of the GSR phenology model for the WV AVA. Spatiotemporal computations of the GST climate index and Pinot Noir specific applications of the GSR model enable the opportunity to explore relationships between their computed values with one intent being to provide updated GST ranges that better align with current temperature-based modeling understanding of Pinot Noir grapevine phenology and the viticultural application of LOCA CMIP5 climate projections for the WV AVA. The Pinot Noir specific applications of the GSR model or the GST index with updated bounds indicate that the percent of the WV AVA area suitable for Pinot Noir production is currently at or near its peak value in the upper 80s to lower 90s of this century.