The impact of global warming on Ontario’s icewine industry

Abstract

Ontario’s wine regions lie at the climatic margins of commercial viticulture owing to their cold winters and short cool growing season. The gradual warming of northern latitudes projected under a human-induced climate change scenario could bring mixed benefits to these wine regions. On the one hand, climate change could moderate the severity of winter temperatures and extend the growing season and on the other, it could be jeopardize the production of internationally renowned icewines for which Canada is famous. This paper examines the trends in winter temperatures over the last forty years for the Niagara Peninsula wine region in Ontario. The study analyzes the occurrences of temperatures ≤ -8o C in the months of November, December, January and February in which the frozen grapes are normally picked. The results of trend analysis showed a high degree of variability along with a weak declining trend in the number of picking days. Two major risks to icewine grapes are prolonged warm and wet conditions that could lead to rot and secondly, destruction of the crop by bird predators. The study also discussed the potential use of weather contracts to mitigate these risks.

DOI:

Publication date: November 22, 2021

Issue: Terroir 2010

Type: Article

Authors

D. Cyr (1) and T.B. Shaw (2)

(1) Department of Finance, Operations and Information Systems & Cool Climate Oenology and Viticulture Institute, Brock University, St. Catharines Ontario, Canada, L2S 3A1
(2) Department of Geography & Cool Climate Oenology and Viticulture Institute, Brock University, St. Catharines Ontario, Canada, L2S 3A1

Contact the author

Keywords

climate change, Ontario, icewine, impacts, weather contracts

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

The use of δ13C as an indicator of water use efficiency for the selection of drought tolerant grapevine varieties

In the context of climate change with increasing evaporative demand, understanding the water use behavior of different grapevine cultivars is of critical importance. Carbon isotope discrimination (δ13C) measurements in wine provide a precise and integrated assessment of the water status of the vines during the sugar accumulation period in grape berries. When collected over multiple vintages on different cultivars, δ13C measurements can also provide insights into the effects of genotype on water use efficiency.

Life cycle assessment (LCA) to move towards more environmentally friendly winegrowing

As six on the nine planetary boundaries have already been crossed, putting our safe life on Earth at risk (Rockström et al., 2024) and agriculture is significantly responsible for it (Campbell et al., 2017), viticulture, faces the challenge of reducing its environmental impacts through fundamental changes to its practices.

Applications pratiques du zonage vitivinicole

Le zonage vitivinicole présente toute une série d’applications pratiques. Son importance est en train d’augmenter, soit en fonction des moyens techniques chaque fois plus performants, qui rendent possible le développement des zonages de plus en plus intégrées, consistants et utiles, soit en fonction d’un marché de plus en plus mondialisé. L’article situe la contribution du zonage au niveau de la production vitivinicole et du développement du territoire.

Phytosterols and ergosterol role during wine alcoholic fermentation for 27 Saccharomyces cerevisiae strains

Sterols are a class of the eukaryotic lipidome that is essential for the maintenance of the cell membrane integrity and their good functionality (Daum et al., 1998).

Regionality in Australian Pinot Noir wines: A study using NMR and ICP-MS with commercial wines

Aim: Wine quality and character are defined in part by the terroir in which the grapes are grown. Metabolomic techniques, such as nuclear magnetic resonance (NMR) spectroscopy and inductively coupled plasma mass spectrometry (ICP-MS), are used to characterise wines and to detect wine fraud in other countries but have not been extensively trialled in Australia. This study aimed to investigate the use of ICP-MS and NMR to characterise a selection of Pinot noir wines.