The impact of global warming on Ontario’s icewine industry

Abstract

Ontario’s wine regions lie at the climatic margins of commercial viticulture owing to their cold winters and short cool growing season. The gradual warming of northern latitudes projected under a human-induced climate change scenario could bring mixed benefits to these wine regions. On the one hand, climate change could moderate the severity of winter temperatures and extend the growing season and on the other, it could be jeopardize the production of internationally renowned icewines for which Canada is famous. This paper examines the trends in winter temperatures over the last forty years for the Niagara Peninsula wine region in Ontario. The study analyzes the occurrences of temperatures ≤ -8o C in the months of November, December, January and February in which the frozen grapes are normally picked. The results of trend analysis showed a high degree of variability along with a weak declining trend in the number of picking days. Two major risks to icewine grapes are prolonged warm and wet conditions that could lead to rot and secondly, destruction of the crop by bird predators. The study also discussed the potential use of weather contracts to mitigate these risks.

DOI:

Publication date: November 22, 2021

Issue: Terroir 2010

Type: Article

Authors

D. Cyr (1) and T.B. Shaw (2)

(1) Department of Finance, Operations and Information Systems & Cool Climate Oenology and Viticulture Institute, Brock University, St. Catharines Ontario, Canada, L2S 3A1
(2) Department of Geography & Cool Climate Oenology and Viticulture Institute, Brock University, St. Catharines Ontario, Canada, L2S 3A1

Contact the author

Keywords

climate change, Ontario, icewine, impacts, weather contracts

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Ageing of sweet wines: oxygen evolution according to bung and barrel type

Barrel ageing is a crucial step in the wine process because it allows many changes to the wine as enrichment, colour stabilization, clarification and also a slow oxygenation. Effects of the oak barrel have to be known to prevent oxidation of the wine. The type of bung used during ageing is also a parameter to consider. Ageing sweet wines in barrel is a real challenge. These wines may need some oxygen at the beginning of ageing but they should be protected at the end of their maturation, to avoid oxidation.

Influence of different Lachancea thermotolerans strains in wine acidity

Wine acidity is a parameter of great importance that influences different quality factors of the product such as biological stability or organoleptic characteristics. In the current context of climate change, which gives rise to wines with higher levels of ethanol and lower acidity, the biological acidification with yeast species such as Lachancea thermotolerans could be a solution.
In this work, the effect of the inoculation of different L. thermotolerans on the acidity of wine was studied.

Effects of stress memory on grapevine resilience in response to recurrent drought and recovery events 

Plants have evolved different strategies to cope with environmental stresses and, although still debated, it was observed that they can remember past stress occurrence.
Anatomical and physiological adjustments have been observed in different grapevine cultivars after repeated drought exposure, however epigenetic, transcriptional and biochemical changes associated with drought-primed ecological memory have been poorly studied.
This work was conceived to test whether exposure to recurring events of mild drought could prime vines to endure severe drought stress. Particularly, we investigated whether the expected improved stress tolerance of Vitis vinifera cv Nebbiolo plants subjected over years to moderate and long-lasting water stress events (WS-primed) depended on molecular memory phenomena or on resetting of stress-induced signals.

Managing precision irrigation in vineyards: hydraulic and molecular signaling in eight grapevine varieties

Understanding the physiological and molecular bases of grapevine responses to mild to moderate water deficits is fundamental to optimize vineyard irrigation management and identify the most suitable varieties. In Mediterranean regions, the higher frequency of heat waves and droughts highlights the importance of precision irrigation to meet vine water demands and demonstrates the necessity for a deeper understanding of the different physiological responses among varieties under water stress. In this context, previous reports show an interplay between stomatal regulation of transpiration and changes in leaf hydraulic conductivity, also with the involvement of aquaporins (AQPs), particularly under water stress. However, how those signaling mechanisms are regulated in different grapevine varieties along phenological phases is unclear.

Yield formation and grape composition: more than meets the eye 

Fruit quality in grapes is not well defined but is often depicted as correlating inversely with crop yield. Both fruit yield and composition, however, are made from distinct components that interact in complex ways. Reproductive growth of grapevines extends over two growing seasons. Inflorescences initiated in buds during the previous year differentiate flowers and set and develop berries during the harvest year.