The impact of global warming on Ontario’s icewine industry

Abstract

Ontario’s wine regions lie at the climatic margins of commercial viticulture owing to their cold winters and short cool growing season. The gradual warming of northern latitudes projected under a human-induced climate change scenario could bring mixed benefits to these wine regions. On the one hand, climate change could moderate the severity of winter temperatures and extend the growing season and on the other, it could be jeopardize the production of internationally renowned icewines for which Canada is famous. This paper examines the trends in winter temperatures over the last forty years for the Niagara Peninsula wine region in Ontario. The study analyzes the occurrences of temperatures ≤ -8o C in the months of November, December, January and February in which the frozen grapes are normally picked. The results of trend analysis showed a high degree of variability along with a weak declining trend in the number of picking days. Two major risks to icewine grapes are prolonged warm and wet conditions that could lead to rot and secondly, destruction of the crop by bird predators. The study also discussed the potential use of weather contracts to mitigate these risks.

DOI:

Publication date: November 22, 2021

Issue: Terroir 2010

Type: Article

Authors

D. Cyr (1) and T.B. Shaw (2)

(1) Department of Finance, Operations and Information Systems & Cool Climate Oenology and Viticulture Institute, Brock University, St. Catharines Ontario, Canada, L2S 3A1
(2) Department of Geography & Cool Climate Oenology and Viticulture Institute, Brock University, St. Catharines Ontario, Canada, L2S 3A1

Contact the author

Keywords

climate change, Ontario, icewine, impacts, weather contracts

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

The effects of alternative herbicide free cover cropping systems on soil health, vine performance, berry quality and vineyard biodiversity in a climate change scenario in Switzerland

There is an urgent need in viticulture to adopt alternative herbicide-free soil management strategies to mitigate climate change, increase biodiversity, reduce plant protection products and improve soil quality while minimizing detrimental effects on grapevine’s stress tolerance and fruit quality. To propose sustainable solutions, adapted to different pedoclimatic conditions in Switzerland, we developed a multidisciplinary 4-year project, started in 2020. Objectives of the project are to a) evaluate the impact of green covers (spontaneous flora, winter cover crop and permanent ground cover) on environmental and agronomic parameters and b) develop subsequently innovative strategies for different viticultural contexts of Switzerland. The project is divided into 3 phases: 1) diagnosis, 2) on-farm and 3) on-station experiments. Phase 1) consisted in an assessment of 30 commercial vineyards all over Switzerland, where growers already use different herbicide-free soil management strategies. The most promising practices identified in this exploratory phase will be replicated in commercial vineyards across Switzerland (“on-farm”) as well as in a classical randomized block design in an experimental plot (“on-station”). For phase 1), measurements consisted in evaluation of soil status (compaction, structure, roots development), soil microbial diversity (metagenomics), plant diversity and biomass, vine physiology (water stress, vigor, leaf nitrogen) and berry quality (acidity, sugar, available nitrogen). Interestingly, the permanent ground cover resulted in a higher Shannon index thus a higher biodiversity as compared to the other itineraries. The winter cover crop increased vine nitrogen and vigor while deteriorating soil quality, leaving the soil more exposed and compacted likely due to more frequent tillage. The spontaneous flora led to higher berry sugar accumulation, less nitrogen and higher malic acid concentration putatively due to a higher water retention of the flora in a particularly wet vintage. Phases 2) and 3) are required to confirm those tendencies, over the 3 next vintages and different climatic conditions.

High density balsamic vinegar: application of stable isotope ratio analysis to determine watering down.

Aceto balsamico di Modena IGP (ABM) is an Italian worldwide appreciated PGI (Protected Geographical Indication) vinegar,  obtained from cooked and/or concentrated grape must (at least 20% of the volume), with the addition of at least 10% of wine vinegar and a maximum 2% of caramel for color stability (EU Reg. 583/ 2009).

Terroirs de Balagne: focus sur le Vermentinu

Depuis 2002, le CIVAM de la région Corse, a entrepris une étude des terroirs viticoles de l’appellation AOC Corse-Calvi (Balagne), comprenant la cartographie des terroirs à potentialité viticole

Seasonal dynamics of water and sugar compartmentalization in grape clusters under deficit irrigation

Water stress triggers functional compartmentalization in grapevines, influencing how resources are allocated to different plant organs.

Vitis v. corvina grapes composition and wine sensory profile as affected by different post harvest withering conditions

Context and purpose of the study – In Valpolicella area (Verona – Italy) Vitis vinifera cv. Corvina is the main wine variety to obtain, after grape withering, Amarone wine: this study was carried out in order to compare two different grape dehydration conditions with the aim of verifying the final composition of Corvina dried grapes and the organoleptic profile of corresponding Amarone wine.