Impact of long term agroecological and conventional practices on subsurface soil microbiota in Macabeu and Xarel·lo vineyards

There is a growing trend on the transition from conventional to agroecological management of vineyards. However, the impact of practices, such as reduced-tillage, organic fertilization and cover crops, is not well-understood regarding the soil microbial diversity, and its relationship with the soil physicochemical properties in the subsurface depth near the rooting zone. Soil bacterial diversity is an important contributor towards plant health, productivity and response to environmental stresses. A field experiment was conducted by sampling subsurface soil bacterial community (NGS and qPCR) near to the root zone of Macabeu and Xarel·lo vineyards, located at the Penedes. 3 organic (ECO) and 3 conventional (CON) vineyards, with more than 10 years of respective management were sampled (n=5 each plot). ECO practices did not affect bacterial and fungal abundance but increased significantly the ammonium oxidizing bacteria and alpha-diversity (Inv.Simpson). Interestingly beta-diversity was significantly affected by the management strategy. ANOSIM-tests revealed a significative effect of the management (ecological vs conventional) and plot, on the soil microbial structure (ASV abundance). Main phyla depicted were Proteobacteria, Actinobacteria and Acidobacteria, whose relative abundances were not affected by the management. EdgeR assay revealed a significant increase of Cyanobacteria and decrease of Gemmatimonadetes and Firmicutes phyla in ECO. Interestingly, the grapevine variety was not correlated with the soil microbial community structure. Mantel-test revealed an important correlation (Spearman) of some physicochemical parameters with the soil microbiota structure, in order of importance: texture, EC, pH Ca/Mg, Mg/P, K+, Mg2+, Ca2+, SO42-, and OM. N-NH4 and NTK, which were higher in the ECO managed soils, did not correlated significantly with the soil microbiome population. The results revealed the importance of combining a deep physicochemical characterization of each replicate with the microbial diversity assessment to gain better insights on the relationship between soil microbiome and vineyard management.

Authors: Marc Viñas1, Miriam Guivernau1, Joan Marull2, Raúl Velasco2, Enric Tello3, Yolanda Lucas1, Joan Pino5, Roser Rotchés-Ribalta8, Inmaculada Funes6, Robert Savé6 and Felicidad de Herralde6

1Sustainability in Biosystems, Institute of Agrifood Research and Technology IRTA, Caldes de Montbui (Barcelona), Spain 
2IERMB, Autonomous University of Barcelona, Bellaterra, Spain 
3Department of Economic History and Institutions, University of Barcelona, Barcelona, Spain
4CREAF, Autonomous University of Barcelona, Bellaterra, Spain 
5Fruit Production, Institute of Agrifood Research and Technology IRTA, Caldes de Montbui, Spain 


Keywords: adaptation, mediterranean, soil management, soil microbiota, metataxonomy

Related Posts

Share via
Copy link
Powered by Social Snap