Climate effect on ripening process in Vitis vinifera, L. cv. Cencibel

Abstract

A seven years survey (2003 to 2009) has been carried out over old traditional vineyards cv. Cencibel in La Mancha region (Spain). Seven plots with more than 35 years old were sampled from veraison to harvest, measuring soluble solids (ºBaumé) and acid concentration (g/l in tartaric acid). The ripening process was different each year depending on season climate character (vintage). The monthly mean temperatures (April to September) and the rainfalls accumulated (April to September) have been studied and these factors have been related with the date of vintage and the colour intensity (very important parameter for wine quality). The growing-degree day (GDD) for the variety Cencibel (1551,1ºC) has been calculated.
The temperature of May is critical for the development of photosynthetic apparatus of the vineyard and thus, conditions all the ripening process. It has been found two different models of vintage: mild-fresh year (2004, 2007 and 2008) and warm year (2003, 2005, 2006 and 2009). In the warm conditions of La Mancha it is very desirable a delay in the ripening process. As the later will be the process, the cooler will be the nights at the end of ripening. This will improve the quality of the vintage, as it happened in the fresh years.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

J.A. Amorós Ortiz-Villajos (1), F. Muñoz de Cuerva (2), C. Pérez de los Reyes (1), F.J. García Navarro (1) and J.A. Campos Gallego (1)

(1) Esc. Univ. Ing. Tecn. Agrícola, UCLM. Ronda de Calatrava, 7. 13071 Ciudad Real, Spain
(2) Bodegas Naranjo, S.L.,C/ Felipe II, Carrión de Calatrava, Spain.

Contact the author

Keywords

Vintage, ripeness, growing degree day, harvest

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Enhancing table grape production: addressing challenges and opportunities for sustainability and quality improvement

Table grapes, being consumed as fresh, raisins, and transformed products are among the most appreciated fruits worldwide. Its popularity is increasing also due to its organoleptic and nutritional qualities that meet the consumers’ interest in healthier foods. Recent data from International Organization of Vine and Wine (OIV) revealed that table grape production has doubled in the last twenty years, and varietal availability has increased thanks to the several breeding programs. To maintain the socio-economic impact of this sector, new challenges need to be addressed.

Clustering wine aromatic composition of Vitis vinifera grapevine varieties

Climate change is likely to impact wine typicity across the globe, raising concerns in wine regions historically renowned for the quality of their terroir. Amongst several changes in viticultural practices, replacing some of the planting material (i.e clones, rootstocks and cultivars) is thought to be one of the most promising potential levers to be used for adapting to climate change. But the change of cultivars also involves the issue of protecting the region’s wine typicity.

Brettanomyces bruxellensis, born to live

The wine spoilage yeast Brettanomyces bruxellensis can be found at several steps in the winemaking process due to its resistance to multiple stress conditions. Among the resistance strategies, one could be the formation of biofilm, a lifestyle known to enhance persistence of microorganisms. In this study, we propose to characterize biofilm of B. bruxellensis in wine, especially through several microscopic analyses.

EMERGENCE OF INORGANIC PHOSPHONATE RESIDUES IN GRAPEVINE PLANT PARTS, BERRIES AND WINES FROM SOURCES OTHER THAN FOLIAR SPRAYING

Inorganic phosphonates are known to effectively support the control of grapevine downy mildew in vi- ticulture. Their application helps the plant to induce an earlier and more effective pathogen defense. However, inorganic phosphonates have been banned in organic viticulture due to their classification as plant protection products since October 2013. Despite the ban, phosphonate has been recently detected in organic wines.

Functional characterisation of genetic elements regulating bunch morphology in grapevine

Vitis vinifera L., is considered one of the world’s most important cultivated fruit crops. In agriculture, bunch morphology is a grapevine-specific trait, which directly impacts fruit quality and health.
Bunch size, shape, and compactness are major aspects of bunch morphology, with the degree of compactness emerging as an important trait for grapevine genetic enhancement and vineyard management. The importance of this trait stems from its impact on disease susceptibility, berry ripening, and other grape quality properties. However, current knowledge of the genes controlling it remains limited.