Climate effect on ripening process in Vitis vinifera, L. cv. Cencibel

Abstract

A seven years survey (2003 to 2009) has been carried out over old traditional vineyards cv. Cencibel in La Mancha region (Spain). Seven plots with more than 35 years old were sampled from veraison to harvest, measuring soluble solids (ºBaumé) and acid concentration (g/l in tartaric acid). The ripening process was different each year depending on season climate character (vintage). The monthly mean temperatures (April to September) and the rainfalls accumulated (April to September) have been studied and these factors have been related with the date of vintage and the colour intensity (very important parameter for wine quality). The growing-degree day (GDD) for the variety Cencibel (1551,1ºC) has been calculated.
The temperature of May is critical for the development of photosynthetic apparatus of the vineyard and thus, conditions all the ripening process. It has been found two different models of vintage: mild-fresh year (2004, 2007 and 2008) and warm year (2003, 2005, 2006 and 2009). In the warm conditions of La Mancha it is very desirable a delay in the ripening process. As the later will be the process, the cooler will be the nights at the end of ripening. This will improve the quality of the vintage, as it happened in the fresh years.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

J.A. Amorós Ortiz-Villajos (1), F. Muñoz de Cuerva (2), C. Pérez de los Reyes (1), F.J. García Navarro (1) and J.A. Campos Gallego (1)

(1) Esc. Univ. Ing. Tecn. Agrícola, UCLM. Ronda de Calatrava, 7. 13071 Ciudad Real, Spain
(2) Bodegas Naranjo, S.L.,C/ Felipe II, Carrión de Calatrava, Spain.

Contact the author

Keywords

Vintage, ripeness, growing degree day, harvest

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Enhancing vineyard resilience: evaluating sustainable practices in the Douro demarcated region

In mediterranean agriculture, sustainability and productivity are seriously threatened by climate change and water scarcity. This situation is exacerbated by poor management practices such as excessive use of agrochemicals, overgrazing, and monoculture. The Douro demarcated region (ddr) is an emblematic region, classified world heritage site by UNESCO in 2001. Viticulture is the main agricultural activity in DDR, widely known to produce port wine.

Yield prediction assessment before bloom and at veraison in a cv. Airén high yielding vineyard in Toledo (La Mancha, Spain)

Anticipation in the possible responses of grapevines to environmental variations is key to adjust field work in view of a more effective management. This idea has been the driving force behind the current work, which seeks to understand the interaction patterns of the vine with its habitat throughout the growing cycle.

SENSORY DEFINITION OF A TECHNICAL UNAVOIDABLE TRANSFER OF AROMA COMPOUNDS VIA SEALING IN A BOTTLING LINE IN ORDER TO PREVENT PROSECUTION DUE TO FRAUDULENT AROMATIZATION OF A SUBSEQUENTLY FILLED WINE

In 2020, 12% of all bottled German wines were aromatized, which may increase further due to rising popularity of dealcoholized wines. As sealing polymers of a bottling line absorb aroma compounds and may release them into regular wines in the next filling¹, this unintentional carry-over bears the risk to violate the legal ban of any aromatization of regular wine. However, following EU legislation, German food control authorities accept a technical unavoidable transfer of aroma compounds, if this is of no sensory significance.

Relationships between vineyard soil physiochemical properties and under-vine soil cover as potential drivers of terroir in the Barossa

Aims: Soils are an intrinsic feature of the landscape and have influenced culturally and economically important terroir delineation in many wine-producing regions of the world. Soil physiochemical properties govern a wide array of ecosystem services, and can therefore affect grapevine health and fruit development. These physiochemical properties can reflect a combination of factors,

Eliminating Brettanomyces and lactic acid bacteria in wine: the potential of Ultra-High Pressure Homogenization (UHPH)

Ultra-High Pressure Homogenization (UHPH) is an innovative technology that can be seamlessly integrated at various stages of winemaking. Its application helps minimize or even eliminate the need for sulphites and other antimicrobial or antioxidant treatments, offering a faster and more sustainable alternative.