Climate effect on ripening process in Vitis vinifera, L. cv. Cencibel

Abstract

A seven years survey (2003 to 2009) has been carried out over old traditional vineyards cv. Cencibel in La Mancha region (Spain). Seven plots with more than 35 years old were sampled from veraison to harvest, measuring soluble solids (ºBaumé) and acid concentration (g/l in tartaric acid). The ripening process was different each year depending on season climate character (vintage). The monthly mean temperatures (April to September) and the rainfalls accumulated (April to September) have been studied and these factors have been related with the date of vintage and the colour intensity (very important parameter for wine quality). The growing-degree day (GDD) for the variety Cencibel (1551,1ºC) has been calculated.
The temperature of May is critical for the development of photosynthetic apparatus of the vineyard and thus, conditions all the ripening process. It has been found two different models of vintage: mild-fresh year (2004, 2007 and 2008) and warm year (2003, 2005, 2006 and 2009). In the warm conditions of La Mancha it is very desirable a delay in the ripening process. As the later will be the process, the cooler will be the nights at the end of ripening. This will improve the quality of the vintage, as it happened in the fresh years.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

J.A. Amorós Ortiz-Villajos (1), F. Muñoz de Cuerva (2), C. Pérez de los Reyes (1), F.J. García Navarro (1) and J.A. Campos Gallego (1)

(1) Esc. Univ. Ing. Tecn. Agrícola, UCLM. Ronda de Calatrava, 7. 13071 Ciudad Real, Spain
(2) Bodegas Naranjo, S.L.,C/ Felipe II, Carrión de Calatrava, Spain.

Contact the author

Keywords

Vintage, ripeness, growing degree day, harvest

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Effect of scion-rootstock combinations on the performance of a near-infrared (NIR) spectroscopy method for determining vine water status

In the context of sustainable viticulture, modern and efficient techniques to determine water status are required to optimize irrigation practices. Proximal techniques such as thermography and spectroscopy have shown promising results. When these techniques are incorporated into mobile systems is possible to evaluate the water status on-the-go, offering the possibility to generate variability maps. However, in most cases, complex protocols of data acquisition and analysis are required. Also, the inherent physiological behaviour of the plants under certain water stress conditions needs to be considered. Therefore, the aim of this study was to evaluate the effect of scion-rootstock combinations on the performance of a predefined plant-based method based on proximal near-infrared (NIR) spectroscopy.

Influence of cover crops in a Tempranillo vineyard grown under the edaphoclimatic conditions of the Appellation of Origin Rueda

The way to manage the vineyard soils has certainly changed in Spain during the last years. Traditionally, the vineyards were tilled, but this growing technique has been replaced in some vineyards by the bare soil with herbicide

Bunch placement effects on dehydration kinetics and physico-chemical composition of Nebbiolo grapes

Sforzato di Valtellina DOCG is a special reinforced red wine produced using withered Nebbiolo grapes. The withering process takes place in traditional rooms under natural environmental conditions; it starts immediately after the harvest and ends not before the 1st December of the same year. The process can be performed with different bunch placements that can influence the grapes features.The purpose of the study is to compare the effect on grape physico-chemical parameters for four withering bunch placement systems: hanged clusters (HC), plastic crates (CT), breathable mesh fabric on wooden frames panels (MF), and reed mats (RM). For all the systems studied, the withering length was two months at a temperature between 6 and 19 °C and a relative humidity of 41-88%.

Evolution of the metabolic profile of grapes in a context of climate change

In the current context of global climate change, anticipating the evolution of the oenological potential of emblematic grape varieties of regions such as Burgundy and Champagne is a guarantee of the sustainability of a sector which has considerable economic weight. however, if various models of climate change cast doubt on the sustainability of these grape varieties in these regions, appellation decrees, as well as consumer expectations, do not allow or consider the use of alternative grape varieties. In addition, control/compensation methods such as irrigation are also not permitted.

PROBING GRAPEVINE-BOTRYTIS CINEREA INTERACTION THROUGH MASS SPECTROMETRY IMAGING

Plants in their natural environment are in continuous interaction with large numbers of potentially pathogenic and beneficial microorganisms. Depending on the microbe, plants have evolved a variety of resistance mechanisms that can be constitutively expressed or induced. Phytoalexins, which are biocidal compounds of low to medium molecular weight synthesized by and accumulated in plants as a response to stress, take part in this intricate defense system.1,2
One of the limitations of our knowledge of phytoalexins is the difficulty of analyzing their spatial responsiveness occurring during plant- pathogen interactions under natural conditions.