Climate effect on ripening process in Vitis vinifera, L. cv. Cencibel

Abstract

A seven years survey (2003 to 2009) has been carried out over old traditional vineyards cv. Cencibel in La Mancha region (Spain). Seven plots with more than 35 years old were sampled from veraison to harvest, measuring soluble solids (ºBaumé) and acid concentration (g/l in tartaric acid). The ripening process was different each year depending on season climate character (vintage). The monthly mean temperatures (April to September) and the rainfalls accumulated (April to September) have been studied and these factors have been related with the date of vintage and the colour intensity (very important parameter for wine quality). The growing-degree day (GDD) for the variety Cencibel (1551,1ºC) has been calculated.
The temperature of May is critical for the development of photosynthetic apparatus of the vineyard and thus, conditions all the ripening process. It has been found two different models of vintage: mild-fresh year (2004, 2007 and 2008) and warm year (2003, 2005, 2006 and 2009). In the warm conditions of La Mancha it is very desirable a delay in the ripening process. As the later will be the process, the cooler will be the nights at the end of ripening. This will improve the quality of the vintage, as it happened in the fresh years.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

J.A. Amorós Ortiz-Villajos (1), F. Muñoz de Cuerva (2), C. Pérez de los Reyes (1), F.J. García Navarro (1) and J.A. Campos Gallego (1)

(1) Esc. Univ. Ing. Tecn. Agrícola, UCLM. Ronda de Calatrava, 7. 13071 Ciudad Real, Spain
(2) Bodegas Naranjo, S.L.,C/ Felipe II, Carrión de Calatrava, Spain.

Contact the author

Keywords

Vintage, ripeness, growing degree day, harvest

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Chemistry and analysis of key volatile compounds of wine and their precursors in grape

A relatively small number of the many volatile substances of wine, often present at trace concentrations, are considered as key volatile compounds. These compounds often exist in grapes under poorly odoriferous or non volatile forms as aroma precursors.

WineMetrics: A new approach to unveil the “wine-like aroma” chemical feature

“The Human being has an excellent ability to detect and discriminate odors but typically has great difficulty in identifying specific odorants”(1). Furthermore, “from a cognitive point of view the mechanism used to judge wines is closer to pattern recognition than descriptive analysis.” Therefore, when one wants to reveal the volatile “wine-like feature” pattern recognition techniques are required. Sensomics is one of the most recent “omics”, i.e. a holistic perspective of a complex system, which deals with the description of substances originated from microorganism metabolism that are “active” to human senses (2). Depicting the relevant volatile fraction in wines has been an ongoing task in recent decades to which several research groups have allocated important resources. The most common strategy has been the “target approach” in order to identify the “key odorants” for a given wine varietal.

Grapevine bud fertility under elevated carbon dioxide

Aims: Microscopic bud dissection is a common tool used to assess grapevine bud fertility and therefore to predict the yield of the following season

Rapporti tra diverse tipologie di terreno e risposte produttive e qualitative delle uve Merlot e Carmenère nell’area DOC Piave

Da anni la ricerca viticola sta orientando le sue attenzioni verso lo studio della vocazionalità degli ecosistemi viticoli, perché fulcro della produttività della vite e qualità dei suoi frutti.

Conversion to mechanical management in vineyards maintains fruit

Current environmental, ecological and economic issues require a better vineyard production management. In fact, a poor use of fertilizing could lead to harmful impact on environment. Another issue concerns the cultures themselves which couldn’t use fertilizers efficiently, leading to a loss of income or too much expense for farmers. Presently, estimation of fertilization’s needs is realized by the laboratory analysis of leaves selected through a random sampling. The present study aims at optimizing fertilization’s management by using a map of biophysical parameters estimated from satellite images.