The influence of climate on the grapevine phenology and content of sugar and total acids in the must

Abstract

For the period of 10 years in the condition of Skopje vineyard area, at two regional (Vranec and Smederevka) and two international (Cabernet sauvignon and Chardonnay) grapevine cultivars, the researches are done.
The influences of temperatures sum on the duration of following phenological stages (number of days) are analyzed: from budburst to full maturity; from budburst to flowering and from veraison to full maturity. The temperature sum has a high impact on the duration of each phenological stage, especially from budburst to full maturity and from budburst to flowering. The climate has the influence on the content of sugar and total acids in the must. These parameters show grater variation at the cultivars Cabernet sauvignon and Chardonnay than cvs. Smedervka and Vranec.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

Violeta Dimovska (1), Klime Beleski (2), Krum Boskov (3)

(1) University Goce Delcev, Faculty of Agriculture, Goce Delcev 89 2000 Stip, Republic of Macedonia
(2) University St. Cyril and Methodius, Institute of Agriculture, Aleksandar Makedonski bb, 1000 Skopje, Republic of Macedonia
(3) University St Cyril and Methodius, Faculty for agricultural sciences and food, Aleksandar Makedonski bb,1000 Skopje, Republic of Macedonia

Contact the author

Keywords

climate, fenology, grape variety, sugar, acids

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Riesling aroma composition in light of changing global temperatures – delving into the effects of warmer nights on the volatile profile of riesling grapes

Climate is a key parameter when the modulation of berry and subsequent wine composition is considered. Recent decades have already seen an increase in global surface temperatures

Predatory Arthropods associated with potential locally-adapted native insectary plants for Australian vineyards

Three locally-adapted native plants were evaluated to determine their capacity to provide insectary benefits to predatory arthropods in association with vineyards, and thereby to enhance biological control of insect pests. Native plants are preferred as supplementary flora, as they are naturally adapted to Australia’s climatic conditions.

UNRAVELING THE CHEMICAL MECHANISM OF MND FORMATION IN RED WINE DURING BOTTLE AGING : IDENTIFICATION OF A NEW GLUCOSYLATED HYDROXYKETONE PRO-PRECURSOR

During bottle aging, the development of wine aroma through low and gradual oxygen exposure is often positive in red wines, but can be unfavorable in many cases, resulting in a rapid loss of fresh, fruity flavors. Prematurely aged wines are marked by intense prune and fig aromatic nuances that dominate the desirable bouquet achieved through aging (Pons et al., 2013). This aromatic defect, in part, is caused by the presence of 3-methyl-2,4-nonanedione (MND). MND content was shown to be lower in nonoxidized red wines and higher in oxidized red wines, which systematically exceeds the odor detection threshold (62 ng/L).

How small amounts of oxygen introduced during bottling and storage can influence the metabolic fingerprint and SO2 content of white wines

The impact of minute amounts of headspace oxygen on the post-bottling development of wine is generally considered to be very important, since oxygen, packaging and storage conditions can either damage or improve wine quality. This is reflected in the generalised use of inert bottling lines, where the headspace between the white wine and the stopper is filled with an inert gas. This experiment aimed to address some open questions about the chemistry of the interaction between wine and oxygen, crucial for decisions regarding optimal closure. While it is known that similar amounts of oxygen affect different wines to a variable extent, our knowledge of chemistry is not sufficient to construct a predictive method.

CHANGES IN CU FRACTIONS AND RIBOFLAVIN IN WHITE WINES DURING SHORT-TERM LIGHT EXPOSURE: IMPACTS OF OXYGEN AND BOTTLE COLOUR

Copper in white wine can be associated with Cu(II) organic acids (Cu fraction I), Cu(I) thiol species (Cu fraction II), and Cu sulfides (Cu fraction III). The first two fractions are associated with the repression of reductive aromas in white wine, but these fractions gradually decrease in concentration during the normal bottle aging of wine. Although exposure of white wine to fluorescent light is known to induce the accumulation of volatile sulfur compounds, causing light-struck aroma, the influence on the loss of protective Cu fractions is uncertain. Riboflavin is known to be a critical initiator of photochemical reac-tions in wine, but the rate of its decay under short-term light exposure in different coloured bottles and for wine of different oxygen concentrations is not well understood.