Analysis of the daily minimum temperatures variability in the Casablanca Valley, Chile

Abstract

The Casablanca Valley (CV) has a complex topography and is located near the Pacific Ocean. These factors generate important climatic differences in relation to other wine producing zones of Central Chile. The air temperature is one of the most important atmospheric variables in viticulture by its influence on the vine development and the quality of the grapes and wines. In this work, the minimum temperature has been studied using a set of meteorological stations to make a comparative climatology between the CV and surrounding viticultural zones, and also with data from an agrometeorological network inside the CV, to make a local comparison applying the Principal Component Analysis. The synoptic configurations were analyzed for the higher and lower minimum temperatures. The comparison with the surrounding zones shows that the CV has differences in the annual cycle of the minimum temperatures (amplitude and extremes values). Its minimum temperature anomalies are less correlated with the more continental stations, and the differences are statistically more marked and are increasing with growing season. The analysis inside de CV shows low differences, with a 93% of the variance explained by the first principal component, but some oceanic influence exists. The analysis shows that the valley has a well differentiated regime of minimum temperatures compared with other wine-producing zones, noticeable in the warm period. Inside the CV there is a low spatial variability, with an important synoptic control, and it is possible to describe some gradient along the ocean proximity.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

Carlo Montes

Centro de Estudios Avanzados en Zonas Áridas (CEAZA)

Raúl Bitrán S/N, La Serena, Chile

Contact the author

Keywords

Minimum temperature, temperature variability, terroir, viticultural zoning

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Évolutions qualitative et quantitative des flores microbiennes de moûts de pommes à cidre au cours de la fermentation: relations avec le terroir et la composition physico-chimique des fruits

En France, la filière A.O.C. cidricole emploie de plus en plus de levures initialement sélectionnées pour les fermentations des vins. Le risque d’une uniformisation organoleptique ou d’un marquage

Potential of native Uruguayan yeast strains for production of Tannat wine

Must fermentation is a complex process influenced by various factors, especially microbiological activities. The characteristics and quality of the resulting wine are closely linked to the stages that unfold throughout this progression.

Adaptation to climate change by determining grapevine cultivar differences using temperature-based phenology models

Grapevine phenology is advancing with increased temperatures associated with climate change. This may result in higher fruit sugar concentrations at harvest and/or earlier compressed harvests and changes in the synchrony of sugar with other fruit metabolites. One adaptation strategy that growers may use to maintain typicity of wine style is to change cultivars. This approach may enable fruit

Photoselective shade films affect grapevine berry secondary metabolism and wine composition

Grapevine physiology and production are challenged by forecasted increases in temperature and water deficits. Within this scenario, photoselective overhead shade films are promising tools in warm viticulture areas to overcome climate change related factors. The aim of this study was to evaluate the vulnerability of ‘Cabernet Sauvignon’ grape berry to solar radiation overexposure and optimize shade film use for berry integrity. A randomized complete block design field study was conducted across two years (2020-2021) in Oakville, Napa Valley, CA, with four shade films (D1, D3, D4, D5) differing in the percent of radiation spectra transmitted and compared to an uncovered control (C0). Integrals for gas exchange parameters and mid-day stem water potential were unaffected by the shade films in 2020 and 2021. By harvest, berries from uncovered and shaded vines did not differ in their size or primary metabolism in either year. Despite precipitation exclusion during the dormant season in the shaded treatments, yield did not differ between them and the control in either season. In 2020, total skin anthocyanins (mg/g fresh mass) in the shaded treatments was greater than C0 during berry ripening and at harvest. Conversely, flavonol concentrations in 2020 were reduced in shaded vines compared to C0. The 2020 growing season highlighted the impact of heat degradation on flavonoids. Flavonoid concentrations in 2021 increased until harvest while flavonoid degradation was apparent from veraison to harvest in 2020 across shaded and control vines. Wine analyses highlighted the importance of light spectra to modify wine composition. Wine color intensity, tonality and anthocyanin values were enhanced in D4 whereas antioxidant properties were enhanced in C0 and D5 wines. Altogether, our results highlighted the need of new approaches in warm viticulture areas given the impact that composition of light has on berry and wine quality.

Distribution of fungicide-resistant Botrytis cinerea mutations in the Tokaj and Eger wine regions

Botrytis cinerea is one of the most widespread host-specific fungal pathogens, causing significant yield losses and economic damage to vineyards every year.