Analysis of the daily minimum temperatures variability in the Casablanca Valley, Chile

Abstract

The Casablanca Valley (CV) has a complex topography and is located near the Pacific Ocean. These factors generate important climatic differences in relation to other wine producing zones of Central Chile. The air temperature is one of the most important atmospheric variables in viticulture by its influence on the vine development and the quality of the grapes and wines. In this work, the minimum temperature has been studied using a set of meteorological stations to make a comparative climatology between the CV and surrounding viticultural zones, and also with data from an agrometeorological network inside the CV, to make a local comparison applying the Principal Component Analysis. The synoptic configurations were analyzed for the higher and lower minimum temperatures. The comparison with the surrounding zones shows that the CV has differences in the annual cycle of the minimum temperatures (amplitude and extremes values). Its minimum temperature anomalies are less correlated with the more continental stations, and the differences are statistically more marked and are increasing with growing season. The analysis inside de CV shows low differences, with a 93% of the variance explained by the first principal component, but some oceanic influence exists. The analysis shows that the valley has a well differentiated regime of minimum temperatures compared with other wine-producing zones, noticeable in the warm period. Inside the CV there is a low spatial variability, with an important synoptic control, and it is possible to describe some gradient along the ocean proximity.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

Carlo Montes

Centro de Estudios Avanzados en Zonas Áridas (CEAZA)

Raúl Bitrán S/N, La Serena, Chile

Contact the author

Keywords

Minimum temperature, temperature variability, terroir, viticultural zoning

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Natural glycolipids for the control of spoilage organisms in red wine

A natural glycolipid mixture obtained from the edible mushroom dacryopinax spathularia (“glycolipids”) is known to be an effective and approved antimicrobial treatment in non-alcoholic beverages at concentrations ranging from 5 – 100 mg/l. It has found a place alongside DMDC for the provision of microbial stability in soft drinks. These properties make the natural and sustainably produced glycolipids a promising candidate for the supplementation or replacement of SO2 in different winemaking processes.

Using climate services to project grapevine varietal adequation under climate change – application to cv. Tempranillo in the Douro wine region

Vine growth circumstances are becoming warmer and drier because of climate change. Higher temperatures advance ripening to a point in the season less conducive to the production of fine wine, while drought reduces yields (Van Leeuwen et al., 2019). Several wine-producing regions around the world have already recognized threats to their viticultural viability (Santos et al., 2020). An economical and cost-effective strategy for adaptation is the employment of late-ripening, drought-resistant plant material (varieties, clones, and rootstocks).

Development of a new lab-scale carbonation method for applications to sparkling wines

Carbon dioxide (CO2) is the gaseous species responsible for the sparkle in all sparkling wines, influencing their
visual appearance, aromas and mouthfeel.

Regulation of terpene production in methyl jasmonate treated cell-cultures

Terpenes are responsible for flavors and aromas of grapes, however, they also protect from radiation, participate in biotic stress and antioxidant mechanisms. The phytohormone methyl jasmonate (MeJA) mediates many of these stress responses and has been associated with increased terpene content in berries. Here, we generated transcriptomic data of Vitis vinifera cv. ‘Gamay’ cells treated with MeJA (100 μM) and cyclodextrins (50 μM) to understand these responses. Ontology analysis revealed that up-regulated genes (URGs) were enriched in jasmonic acid biosynthesis and signaling terms, as expected. Inspection of transcription factors (TFs) among URGs allowed us to study uncharacterized TFs.

Agri-photovoltaics: first experience above Riesling vines

Agri-photovoltaics (apv) describes the dual use of an agricultural area for food production and solar power generation. There are already a number of systems in operation around the world with various crops and under a wide range of different set-ups. In large parts, they still allow mechanical cultivation and other positive side effects of an APV system were observed in addition to the increase in utilization in the form of electricity and food: effects on the water balance and passive protection against extreme weather events.