Terroir 2012 banner
IVES 9 IVES Conference Series 9 Precision viticulture: using on-board sensors to map vine variability and characterize vine trajectories

Precision viticulture: using on-board sensors to map vine variability and characterize vine trajectories


Precision viticulture consists in using ICT (Information and Communication Technology) to implement more specific and better targeted technical vine practices. With proxy-detection, precision viticulture mobilizes on-board sensors, computers, and GNSS positioning. Three sensors were embedded on a tractor and tested on a plot with three champagne grape varieties. This plot is located at the Plumecoq experimental vineyard (CIVC, Champagne, France). The first sensor is a pruning wood sensor (Physiocap) designed and developed by CIVC. Physiocap is used during dormancy season to characterize vine architecture by measuring shoot vigor, shoot number and biomass. The other two are growing season sensors. GreenSeeker Trimble provides a vegetative vine index by measuring foliage porosity. Multiplex Force-A characterizes vine metabolism through chlorophyll, anthocyanin, flavonol, and nitrogen leaf content. Data from these sensors define the physiological state of the vine at the time of measure. The sensors can also map spatial vine variability within a plot or between plots. To understand the vineyard as a whole, the combination of biomass indexes and leaf contents is interesting. In this case, there was some good correlation between the indexes and yield and must compounds such as nitrogen, acidity or sugar. By collecting sensor data at several key stages, it is possible to plot vine trajectories. Vine trajectory describes the physiological developments made by the vineyard according to its initial potential. It depends on annual climatic conditions and physical environment. Vine trajectories are useful to understand the effect of year and terroir.


Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article


Sébastien DEBUISSON, Manon MORLET, Claire GERMAIN, Olivier GARCIA, Laurent PANIGAÏ, Dominique MONCOMBLE

Comité Interprofessionnel du Vin de Champagne (CIVC)

Contact the author


Precision viticulture, vine trajectory, multiplex, NDVI, Pruning wood sensor


IVES Conference Series | Terroir 2012


Related articles…

Enological evaluation of the attitude of the grapevine fumin to give varietal wines

Initiatives have been ongoing in recent years to safeguard biodiversity in the oenological sector via a process of enhancement of ancient varieties, under a pressure of a market strongly oriented towards production deriving from native vines of specific geographical zones. In that sense, Aosta Valley
(Italy) has raised the need to preserve and characterize its minority vine varieties which have the potentiality to give varietal wines. Fumin represents the 7% of the production of the region with 16 hectares of vineyards and 753 hectolitres of derived wine. Due to its large phenolic potential, strong astringency and deep colour, it has long been, and is still today, assembled or blended with other varieties as occurs, for example, for the Torrette.

Genomic characterization of terpene biosynthetic genes in seven Vitis vinifera L. varieties 

Grapes (Vitis vinifera L.) are a fruit crop of high economic significance globally. Each grapevine cultivar is characterized by its distinctive grape aroma, affecting the wine quality. In several cultivars, the aroma is shaped by terpenoid (mono- and sesqui-terpenoids). Their profile is controlled by terpene synthases (TPS), which are part of a largely expanded gene family. How the variation in TPS copy number and sequence among cultivars determines terpenoid profiles of grapes remains largely unexplored. We annotated TPS in the haplotypes of seven genomes (Riesling, Albariño, Fiano, Gewürztraminer, Pinot Noir, Cabernet Sauvignon, and Viognier) using BLAST, GMAP, PFAM, and phylogenetic analyses. Further, TPS expression patterns and terpenoid accumulation during berry development and ripening were characterized using RNA-Seq and SPME/GC-MS platforms, respectively. Variation in TPS copy number exists among cultivars. Specifically, the TPS counts span a range of 251 to 150 for Riesling and Fiano, respectively, when considering combined haplotypes within each cultivar. Total terpenoid accumulation patterns throughout development were consistent among the five aromatic cultivars, marked by high concentrations in flowers, followed by a decline and subsequent rise during berry development and ripening, respectively. Conversely, non-aromatic cultivars exhibited no substantial increase in terpenoid concentration during ripening. Transcriptome and network analyses are currently employed to determine which TPS are expressed in the berry and determine the terpenoid profile of the specific cultivar. These findings shed light on the genomic determinants of grape aroma in major cultivars, and allow future studies focused on cultivar-specific responses of terpenoid biosynthesis to environmental stresses.

Organic and biodynamic sustainable productions and effect on eligibility and peculiarity of a typical wine

The wine industry is currently shifting toward more sustainable production systems. There are many reasons for this as the interest of people over climate change and, consequently the wine consumer’s choice toward organic and biodynamic, reduced carbon-footprint, vegan and other environmentally friendly wines. While the viticultural effects of biodynamic and organic practices on wine grapes have been investigated, there is a lack in literature on the general effect on the final quality of wine

Towards stopping pesticides: survey identification of on-farm solutions

The winegrowing sector consumes a lot of pesticides. Changes in vineyard are necessary in order to reduce or even stop using pesticides, and thus limit their harmful impacts on health and on environment. To answer these issues, the VITAE project (2021-2026) aims at designing pesticide free grapevine systems in France. For that, we take an interest in the vineyards using solutions to strongly reduce chemicals but also biopesticides. We assume that such vineyards exist and that they are implementing solutions that could inspire the design of free- pesticide system.

Efficient irrigation strategies and water use reduction in the high quality production regions of Priorat and Montsant (Spain)

Priorat and Montsant Appellations of Origin are located in the south of Catalonia (North‐East Spain), under severe Mediterranean climatic conditions