Analysis of climate spatio-temporal variability in the Conegliano-Valdobbiadene DOCG wine district

Abstract

Local climate characterization is fundamental in terroir description, yet global change perspectives raise questions about its feasibility, since temporal stability cannot be no more assumed for the forthcoming years.
The objective of this work was to gain a better understanding of the climatic spatio-temporal variability of a grapevine growing area, and how this has changed during recent times.
Using as a case-study the Conegliano-Valdobbiadene DOCG wine district in North-Eastern Italy, we developed a methodology to downscale daily mean air temperature from the European Climate Assessment gridded dataset (E-OBS), to derive daily temperature surfaces at 500m spatial resolution. This allowed to analyse how the spatio-temporal variability affected grapevine phenology in the last 60 years.
The main results showed that, respect to the 1950-1979 period, the average Winkler index between 1980 and 2008 showed a +184 °C increase, with little spatial variation, as well as for the estimated dates for the main phenological events, which showed a generalized anticipation of about 2 to 5 days. More pronounced changes were observed on the interannual variability, which showed increases in both the average values and pattern of distribution.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

G. Fila, F. Meggio, L.M. Veilleux, A. Pitacco

University of Padova, Department of Environmental Agronomy and Crop Science I-35020 Legnaro (PD), Italy

Contact the author

Keywords

Grapevine, Climate Change, Temperature, Phenology, Downscaling, Spatial Interpolation

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Mesoclimate impact on Tannat in the Atlantic terroir of Uruguay

The study of climate is relevant as an element conditioning the typicity of a product, its quality and sustainability over the years. The grapevine development and growth and the final grape and wine composition are closely related to temperature, while climate components vary at mesoscale according to topography and/or proximity to large bodies of water. The objective of this work is to assess the mesoclimate of the Atlantic region of Uruguay and to determine the effect of topography and the ocean on temperature and consequently on Tannat grapevine behavior.

International Terroir Congress: 14 years of scientific proceedings!

We are a partner of the International Terroir Congress. For 4 months, our team has been putting the congress archives online. We are very proud to announce that the 14 years of archives are finally available. All archives of the International Terroir Congress are...

Rare earth elements in grapes and soil: study of different soil extraction methods

Lanthanides, together with scandium and yttrium, make up the group of Rare Earth Elements (REEs). An official method for analysis of the bioavailable REEs accumulated by plants, depending mainly on soil characteristics, chemical speciation in soil and the specific ability of the plant, is still lacking.

CHARACTERIZATION OF ENOLOGICAL OAK TANNIN EXTRACTS BY MULTI-ANALYTICAL METHODS APPROACH

Oak tannin extracts are commonly used to improve wine properties. The main polyphenols found in oak wood extracts are ellagitannins¹ that release ellagic acid upon hydrolysis and comprise numerous structures². Moreover, oak tannin extracts contain other compounds giving a complex mixture. Consequently, the official OIV method based on gravimetric analysis of the tannin fraction adsorbed on polyvinylpolypyrrolidone is not sufficient to describe their composition and highlight their chemical diversity.

Sustaining wine identity through intra-varietal diversification

With contemporary climate change, cultivated Vitis vinifera L. is at risk as climate is a critical component in defining ecologically fitted plant materiel. While winegrowers can draw on the rich diversity among grapevine varieties to limit expected impacts (Morales-Castilla et al., 2020), replacing a signature variety that has created a sense of local distinctiveness may lead to several challenges. In order to sustain wine identity in uncertain climate outcomes, the study of intra-varietal diversity is important to reflect the adaptive and evolutionary potential of current cultivated varieties. The aim of this ongoing study is to understand to what extent can intra-varietal diversity be a climate change adaptation solution. With a focus on early (Sauvignon blanc, Riesling, Grolleau, Pinot noir) to moderate late (Chenin, Petit Verdot, Cabernet franc) ripening varieties, data was collected for flowering and veraison for the various studied accessions (from conservatory plots) and clones. For these phenological growing stages, heat requirements were established using nearby weather stations (adapted from the GFV model, Parker et al., 2013) and model performances were verified. Climate change projections were then integrated to predict the future behaviour of the intra-varietal diversity. Study findings highlight the strong phenotypic diversity of studied varieties and the importance of diversification to enhance climate change resilience. While model performances may require improvements, this study is the first step towards quantifying heat requirements of different clones and how they can provide adaptation solutions for winegrowers to sustain local wine identity in a global changing climate. As genetic diversity is an ongoing process through point mutations and epigenetic adaptations, perspective work is to explore clonal data from a wide variety of geographic locations.