Analysis of climate spatio-temporal variability in the Conegliano-Valdobbiadene DOCG wine district

Abstract

Local climate characterization is fundamental in terroir description, yet global change perspectives raise questions about its feasibility, since temporal stability cannot be no more assumed for the forthcoming years.
The objective of this work was to gain a better understanding of the climatic spatio-temporal variability of a grapevine growing area, and how this has changed during recent times.
Using as a case-study the Conegliano-Valdobbiadene DOCG wine district in North-Eastern Italy, we developed a methodology to downscale daily mean air temperature from the European Climate Assessment gridded dataset (E-OBS), to derive daily temperature surfaces at 500m spatial resolution. This allowed to analyse how the spatio-temporal variability affected grapevine phenology in the last 60 years.
The main results showed that, respect to the 1950-1979 period, the average Winkler index between 1980 and 2008 showed a +184 °C increase, with little spatial variation, as well as for the estimated dates for the main phenological events, which showed a generalized anticipation of about 2 to 5 days. More pronounced changes were observed on the interannual variability, which showed increases in both the average values and pattern of distribution.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

G. Fila, F. Meggio, L.M. Veilleux, A. Pitacco

University of Padova, Department of Environmental Agronomy and Crop Science I-35020 Legnaro (PD), Italy

Contact the author

Keywords

Grapevine, Climate Change, Temperature, Phenology, Downscaling, Spatial Interpolation

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

HPLC-based quantification of elemental sulfur in grape juice

Elemental sulfur is commonly used in vineyards as a fungicide to prevent diseases and protect grapevines.1 The challenges of climate change are intensifying disease pressure, further increasing the reliance on sulfur use. Understanding the range of potential impacts of residual sulfur during the winemaking process is becoming increasingly important.

Evolución de los compuestos fenólicos durante el envero y la maduración en la DO Tarragona

La evolución de los contenidos en las pieles de compuestos fenólicos (fenólicos totales, antocianos totales, antocianos individuales por HPLC, catequinas y proantocianidoles) a lo largo

VitExpress, an open interactive transcriptomic platform for grapevine

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

In vitro tissue culture as a tool for Croatian grapevine germplasm management

In vitro culture makes it possible to carry out specific studies that would not be possible with whole plants grown in the field or in a greenhouse. Cryopreservation allows long-term preservation without metabolic changes in the plant material and cryotherapy can be efficient in virus elimination, which is a major scientific challenge.
The preculture media of cryopreservation protocols were evaluated on three Croatian grape varieties with different antioxidants (salicylic acid, ascorbic acid and glutathione). The highest growth in vitro was achieved on the medium with the addition of glutathione and the lowest with the addition of salicylic acid.

Biomarker-based phenotyping of grapevine (vitis spp.) resistance to plasmopara viticola reveals interactions between pyramided resistance loci

Grape downy mildew, caused by plasmopara viticola, is one of the main diseases affecting viticulture worldwide and its control usually relies on frequent sprays with agrochemicals. Grapevine varieties resistant to p. Viticola represent an effective solution to control downy mildew and reduce the environmental impact of viticulture. Loci of resistance to p. Viticola (Rpv) have been introgressed from wild vitis species and some of them, like Rpv1, Rpv3.1 and Rpv10, are currently the most utilized genetic resources in grape breeding.