Future scenarios for viticultural climatic zoning in Europe


Climate is one of the main conditioning factors of winemaking. In this context, bioclimatic indices are a useful zoning tool, allowing the description of the suitability of a particular region for wine production. In this study, we compute climatic indices for Europe, characterize regions with different viticultural aptitude, and assess possible variations in these regions under a future climate conditions using a state-of-the-art regional climate model. The indices are calculated from climatic variables (mostly daily temperatures and precipitation) obtained from the regional climate model COSMO-CLM for recent and future climate conditions. Maps of theses indices for recent decades (1961-2000) and for the XXI century (following the SRES A1B scenario) are considered to identify possible changes. Results show that climate change is projected to have a significant negative impact in wine quality by increased dryness and cumulative thermal effects during growing seasons in Southern European regions (e.g. Portugal, Spain and Italy). These changes represent an important constraint to grapevine growth and development, making crucial adaptation/mitigation strategies to be adopted. On the other hand, regions of western and central Europe (e.g. southern Britain, northern France and Germany) will benefit from this scenario both in wine quality, and in new potential areas for viticulture. This approach provides a macro-characterization of European areas where grapevines may preferentially grow, as well as their projected changes, and is thus a valuable tool for viticultural zoning in a changing climate.


Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article


A. C. Malheiro (1), J. A. Santos (1), H. Fraga (1), J. G. Pinto (2)

1) Centre for Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trásos-Montes e Alto Douro, 5001-801 Vila Real, Portugal
(2) Institut für Geophysik und Meteorologie, Universität zu Köln, Kerpener Str. 13, 50923 Köln, Germany

Contact the author


Viticultural zoning, scenarios, Europe, climate change, CLM


IVES Conference Series | Terroir 2010


Related articles…

Development of FTIR partial least squares models for polyphenol quantification in red wine during fermentation

Polyphenolic compounds are considered to have a major impact on the quality of red wines. Sensory impact, such as astringency and bitterness, stems directly from tannin composition. Thenceforth, quick analytical measurement of phenolic compounds appears to be a real challenge for winemaking monitoring and process control. Many methods were developed to analyzed polyphenols in wine, but they are time-consuming and require chemistry skills and equipment, not suitable for a rapid routine analysis. A reliable and rapid method to obtain this kind of measurement is Fourier Transform Infrared (FTIR) spectroscopy.

Understanding the complexity of grapevine winter physiology in the face of changing climate

The vast majority of our understanding of grapevine physiology is focused on the processes that occur during the growing season. Though not obvious, winter physiological changes are dynamic and complex, and have great influence on the survival and phenology of grapevines. In cool and cold climates, winter temperatures are a constant threat to vine survival. Additionally, as climate changes, grapevine production is moving toward more traditionally cool and cold climates, either latitudinal or altitudinal in location. Our research focuses on understanding how grapevines navigate winter physiological changes and how temperature impacts aspects of cold hardiness and dormancy. Through these studies, we have gained keen insight into the connections between winter temperature, maximum cold haridness, and budbreak phenology, that can be used to develop prediction models for viticulture in a changing climate.

Terroir effects on wine aromatic metabolomics in the eastern foot of Helan Mountain, Ningxia, China

Aim: The eastern foot of Helan Mountain, Ningxia, China is one of the most important wine production regions in China and grape cultivation has spread in several sub-regions with different soils and cultivars. Large diversity in wine aromas have been observed at Ningxia region but which terroir factors drive those diversity in aromas remain to uncover. This study aims to investigate the impacts of grape varieties and soil chemical properties on wine aromas at Ningxia, in order to characterize the aromatic typicality of Ningxia wines and provide foundation for developing a ‘Protected Designation of Origin’ system. 

Une méthode d’étude synthétique du paysage

a) wine, a qualitative and user-friendly product, favors a visual support, even for a scientific study because it refers to the image of the terroir, in particular by its visible landscape. b) the vineyard landscape, which is fairly open by definition, favors this type of approach. c) the framework of the Terroir Test conducted by the URVV (INRA – Angers) comprises 15 micro-plots of 100 strains, and requires at this scale precise surveys of the environment, hence systematic shots, of the center of the plot, over 360°, at 50 mm intervals, at 1.70 m from the ground and horizontally.

Water and physiological response to early leaf removal of cv. Verdejo in rainfed conditions, at different times of the day, in the D.O. Rueda (Spain)

Aim: Early leaf removal, generally applied before flowering, is mostly conceived as a technique to control grape yield and improve the health of grapes and focused on the final objective of increasing wine quality.