Terroir 2010 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2010 9 Historic and future climate variability and climate change: effects on vocation, stress and new vine areas (T2010) 9 The adaptative capacity of a viticultural area (Valle Telesina, Southern Italy) to climate changes

The adaptative capacity of a viticultural area (Valle Telesina, Southern Italy) to climate changes

Abstract

The viticulture aiming at the production of high quality wine is very important for the landscape conservation, because it allows to combine high farmer income with soil conservation. The quality of grape and wine is variety-specific and it depends significantly on the pedoclimatic conditions. The evolution of climate may thus endanger not only yield (IPCC, 2007) but, more significantly, the sustainability of current varieties. Adaptation of current production systems may be feasible, but requires a timely evaluation of whether adaptation to climate evolution might be limited to improving crop and soil management or should involve replacement of cvs or species altogether.
This study addressed this question by evaluating the adaptive capacity of a 20000 ha viticultural area in the “Valle Telesina” (Campania Region, Southern Italy). This area has a long tradition in the production of high quality wines (DOC and DOCG) and it is characterized by a complex geomorphology with a large soil and climate variability.
Two climate periods were considered: “past” (1984-1996) and “present” (2000-2009), which show a pattern of climate variability. The periods were taken as an example of different scenarios generated by climate changes.
The Amerine & Winkler index was calculated in each climate period and compared with the thermal requirements of a set of grapevine cvs, including the ones currently cultivated in the area.
Due to the observed trend of temperature increase from the “past” to the “present” period, differences were detected in the A&W index’s values and spatial distribution. When compared with the A&W indexes of the grape varieties the temperature increase resulted in a considerable increase of the area eligible to some varieties (Guarnaccia and Forastera) and a strong reduction of the area suitable for some of the most important current varieties (Aglianico and Falanghina).
Moreover, the hydrological model SWAP was applied to estimate the Crop Water Stress Index (CWSI) in the “present” climatic period, in order to evaluate the effects of the re-distribution of the cultivars over the study area on vineyards’ water balance.
This approach is being applied to other crops and other production systems towards quantitative, realistic studies on the adaptation of agriculture to climate evolution.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

A. Bonfante (1), A. Basile (1), F. De Lorenzi (1), G. Langella (1), F. Terribile (2), M. Menenti (3)

(1) Institute for Mediterranean Agricultural and Forest Systems (ISAFOM-CNR), Ercolano (NA), Italy
(2) University of Naples Federico II, Portici (NA), Italy
(3) Delft University of Technology, Delft, The Netherlands

Contact the author

Keywords

Grapevine adaptative capacity, Amerine & Winkler index, SWAP, Climate changes, quality viticulture

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Effects of soil characteristics on manganese transfer from soil to vine and wine

Aim: In recent times the export of Beaujolais wines has been jeopardised due to a limit of manganese content (Mn) in wine implemented by China (2 mg/L), related to suspicions of potassium permanganate fraud. Nevertheless, soil Mn content may be high in some soil types in Beaujolais. The aim of this study was to improve knowledge of manganese transfer from soil to vine and wine because data on this subject is scarce.

Measurement of synthetic solutions imitating alcoholic fermentation by dielectric spectroscopy

Having the possibility to use a wide spectrum of elecromagnetic waves, dielectric spectroscopy is a technique commonly used for electrical characterization of dielectrics or that of materials with high energy storage capacity, just to name a few. Based on the electrical excitation of dipoles (polymer chains or molecules) or ions in relation to the characteristics of a weak external electric field, this method allows the measurement of the complex permittivity or impedance of polarizable materials, each component having a characteristic dipole moment.In recent years, the food industry has also benefited from the potential offered by this technique, whether for the evaluation of fruit quality or during the pasteurization of apple juice [1-3]. As the tests are fast and do not destroy the products, dielectric spectroscopy proved to be an experimental tool suitable for online measurements as well as long-term monitoring.

Rootstock regulation of scion phenotypes: the relationship between rootstock parentage and petiole mineral concentration

Grapevine is grown as a graft since the end of the 19th century. Rootstocks not only provide tolerance to Phylloxera but also ensure the supply of water and mineral nutrients to the scion. Rootstocks are an important mean of adaptation to environmental conditions, because the scion controls the typical features of the grapes and wine. However, among the large diversity of rootstocks worldwide, few of them are commercially used in the vineyard. The aim of this study was to investigate the extent to which rootstocks modify the mineral composition of the petioles of the scion. Vitis vinifera cvs. Cabernet-Sauvignon, Pinot noir, Syrah and Ugni blanc were grafted onto 55 different rootstock genotypes and planted in a vineyard as three replicates of 5 vines. Petioles were collected in the cluster zone with 6 replicates per combination. Petiolar concentrations of 13 mineral elements (N, P, K, S, Mg, Ca, Na, B, Zn, Mn, Fe, Cu, Al) at veraison were determined. Scion, rootstock and the interaction explained the same proportion of the phenotypic variance for most mineral elements. Rootstock genotype showed a significant influence on the petiole mineral element composition. Rootstock effect explained from 7 % for Cu to 25 % for S of the variance. The difference of rootstock conferred mineral status is discussed in relation to vigor and fertility. Rootstocks were also genotyped with 23 microsatellite markers. Data were analysed according to genetic groups in order to determine whether the petiole mineral composition could be related to the genetic parentage of the rootstock. Thanks to a highly powerful design, it is the first time that such a large panel of rootstocks grafted with 4 scions has been studied. These results give the opportunity to better characterize the rootstocks and to enlarge the diversity used in the vineyard.

Un siècle de publications et d’archives de l’OIV : un patrimoine mondial de valeur universelle exceptionnelle pour les sciences et techniques de la vigne et du vin

In 2004, at its general assembly, the oiv adopted the transfer of its scientific and technical heritage from the office to the international organisation of vine and wine. Unesco defines heritage as “our legacy from the past, what we live with today, and what we pass on to future generations.”

Aroma profile of Tempranillo tropical red wines from different seasons in the São Francisco valley, northeast of Brazil

Aromatic characteristics of wines are strongly influenced by agronomical and enological factors, depending of the climate, cultivar and winemaking process. Tropical wines are a new concept of vitiviniculture that is being developped in the Northeast of Brazil since the 80’s, located between 8-9º latitude of the South Hemisphere, where the second most important cultivar used for reds is Tempranillo. In this condition, vines produce grapes and enologists elaborate wines twice a year, because high temperatures, solar radiation and water availability for irrigation.