The adaptative capacity of a viticultural area (Valle Telesina, Southern Italy) to climate changes

Abstract

The viticulture aiming at the production of high quality wine is very important for the landscape conservation, because it allows to combine high farmer income with soil conservation. The quality of grape and wine is variety-specific and it depends significantly on the pedoclimatic conditions. The evolution of climate may thus endanger not only yield (IPCC, 2007) but, more significantly, the sustainability of current varieties. Adaptation of current production systems may be feasible, but requires a timely evaluation of whether adaptation to climate evolution might be limited to improving crop and soil management or should involve replacement of cvs or species altogether.
This study addressed this question by evaluating the adaptive capacity of a 20000 ha viticultural area in the “Valle Telesina” (Campania Region, Southern Italy). This area has a long tradition in the production of high quality wines (DOC and DOCG) and it is characterized by a complex geomorphology with a large soil and climate variability.
Two climate periods were considered: “past” (1984-1996) and “present” (2000-2009), which show a pattern of climate variability. The periods were taken as an example of different scenarios generated by climate changes.
The Amerine & Winkler index was calculated in each climate period and compared with the thermal requirements of a set of grapevine cvs, including the ones currently cultivated in the area.
Due to the observed trend of temperature increase from the “past” to the “present” period, differences were detected in the A&W index’s values and spatial distribution. When compared with the A&W indexes of the grape varieties the temperature increase resulted in a considerable increase of the area eligible to some varieties (Guarnaccia and Forastera) and a strong reduction of the area suitable for some of the most important current varieties (Aglianico and Falanghina).
Moreover, the hydrological model SWAP was applied to estimate the Crop Water Stress Index (CWSI) in the “present” climatic period, in order to evaluate the effects of the re-distribution of the cultivars over the study area on vineyards’ water balance.
This approach is being applied to other crops and other production systems towards quantitative, realistic studies on the adaptation of agriculture to climate evolution.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

A. Bonfante (1), A. Basile (1), F. De Lorenzi (1), G. Langella (1), F. Terribile (2), M. Menenti (3)

(1) Institute for Mediterranean Agricultural and Forest Systems (ISAFOM-CNR), Ercolano (NA), Italy
(2) University of Naples Federico II, Portici (NA), Italy
(3) Delft University of Technology, Delft, The Netherlands

Contact the author

Keywords

Grapevine adaptative capacity, Amerine & Winkler index, SWAP, Climate changes, quality viticulture

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Fungal communites diversity and functional roles of different types of Botrytis cinerea infected grape berries on different growing sites

Botrytis cinerea, an Ascomycota pathogen with a broad host range, infects over 1200 plant species. Grapes infected by this pathogen, which subsequently develop a noble rot, remain in the vineyard for an extended period, thus being exposed to a diverse array of physical, chemical and biological factors, which give rise to a complex microbial community.

Effect of different winemaking techniques and grape variety on chemo-sensory parameters of white wines

AIM: Study the chemical and sensory parameters of fifty commercial white wines elaborated with different techniques (fermented in oak barrel and aged on lees (FB+AL); aged on lees (AL); and without aging (WA)) and different grape varieties (Verdejo, Sauvignon blanc and Godello).

Enhancing sustainability in winemaking: the role of PIWI in South Tyrol

The adoption of PIWI (Pilzwiderstandsfähige) grape cultivars, bred for resistance to fungal diseases, is a transformative step towards sustainable winemaking.

Enological, economical, social and viticulture ”terroir” units as fundamental elements of mosaic of “big” zoning

Nous savons tous très bien qu’on a assisté au cours de ces dix dernières années à une éclosion soudaine de recherches sur le zonage viti-vinicole qui, à partir par exemple du modèle du concept de “terroir”, se sont de plus en plus enrichies en passant aux “Unités ou Systèmes de Transformation” (UTTE) et “Valorisation” (UTCE) pour terminer avec les “Systèmes productifs globaux du Territoire” (UTB) comprenant en filière les aspects existentiels (UTBES), sociaux (UTBSO) et économiques (UTBEC) hypothisés dans le “GRANDE ZONAZIONE: Grand zonage” (MORLAT R., 1996, CARBONNEAU A., 1996, TOUZARD J.M. 1998, CARBONNEAU A., CARGNELLO G., 1996, 1998, CARGNELLO G., 1994, 1995, 1996, 1998, 1999, 2001, -MILOTIC A., CARGNELLO G., PERSURIC G., 1999, PERSURIC G., STAYER M., CARGNELLO G., 2000, MILOTIC A., OPLANIC M., CARGNELLO G., PERSURIC G., 2000).

New methods and technologies to describe the environment in terroir studies

The concept of terroir in viticulture deals with the influence of environmental factors on vine behaviour and grape ripening. Recent advances in technology, in particular computer technology, allow a more in-depth study of the environment. Geomorphology can be studied with digital Elevation Models (DEM). Soils can be surveyed with geophysics.