The adaptative capacity of a viticultural area (Valle Telesina, Southern Italy) to climate changes

Abstract

The viticulture aiming at the production of high quality wine is very important for the landscape conservation, because it allows to combine high farmer income with soil conservation. The quality of grape and wine is variety-specific and it depends significantly on the pedoclimatic conditions. The evolution of climate may thus endanger not only yield (IPCC, 2007) but, more significantly, the sustainability of current varieties. Adaptation of current production systems may be feasible, but requires a timely evaluation of whether adaptation to climate evolution might be limited to improving crop and soil management or should involve replacement of cvs or species altogether.
This study addressed this question by evaluating the adaptive capacity of a 20000 ha viticultural area in the “Valle Telesina” (Campania Region, Southern Italy). This area has a long tradition in the production of high quality wines (DOC and DOCG) and it is characterized by a complex geomorphology with a large soil and climate variability.
Two climate periods were considered: “past” (1984-1996) and “present” (2000-2009), which show a pattern of climate variability. The periods were taken as an example of different scenarios generated by climate changes.
The Amerine & Winkler index was calculated in each climate period and compared with the thermal requirements of a set of grapevine cvs, including the ones currently cultivated in the area.
Due to the observed trend of temperature increase from the “past” to the “present” period, differences were detected in the A&W index’s values and spatial distribution. When compared with the A&W indexes of the grape varieties the temperature increase resulted in a considerable increase of the area eligible to some varieties (Guarnaccia and Forastera) and a strong reduction of the area suitable for some of the most important current varieties (Aglianico and Falanghina).
Moreover, the hydrological model SWAP was applied to estimate the Crop Water Stress Index (CWSI) in the “present” climatic period, in order to evaluate the effects of the re-distribution of the cultivars over the study area on vineyards’ water balance.
This approach is being applied to other crops and other production systems towards quantitative, realistic studies on the adaptation of agriculture to climate evolution.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

A. Bonfante (1), A. Basile (1), F. De Lorenzi (1), G. Langella (1), F. Terribile (2), M. Menenti (3)

(1) Institute for Mediterranean Agricultural and Forest Systems (ISAFOM-CNR), Ercolano (NA), Italy
(2) University of Naples Federico II, Portici (NA), Italy
(3) Delft University of Technology, Delft, The Netherlands

Contact the author

Keywords

Grapevine adaptative capacity, Amerine & Winkler index, SWAP, Climate changes, quality viticulture

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

“Gheo” per la vitivinicoltura: un progetto per la produzione dl vini dl alta qualità

Il settore primario, ed in particolare quello agricolo, sta attraversando un periodo partico­larmente delicato. Sia gli aspetti della produzione che quelli della commercializzazione ven­gono infatti messi in discussione da nuovi indirizzi economici e tecnologici.

Phenology and maturation of Cabernet Sauvignon grapes from young vineyards at Santa Catarina state, Brazil – a survey of vineyard altitude and mesoclimat influences

Cabernet Sauvignon grapes from recently planted vines in Santa Catarina State (Brazil), were sampled during ripening from the 2005 and 2006 vintages.

Evolution of grape aromatic composition in cv. Ugni blanc

Cognac is a protected appellation of origin where world-famous brandies are produced. These brandies are obtained by the traditional double distillation of wines from Ugni blanc cultivar

Phenolic composition of Cabernet Sauvignon wines from Argentina, Portugal and Spain

Grape and wine phenolic compounds have been shown to be highly related to both wine quality (color, flavor, and taste) and health-promoting properties (antioxidant and cardioprotective, among others). The aim of this work was to evaluate and compare the phenolic contents of Cabernet Sauvignon wines from different geographical areas and climatic conditions, namely from Argentina, Portugal and Spain vintage 2022. In addition, the phenolic profiles of the Portuguese wines from three vintages (2020, 2021, 2022) was compared.

EMERGENCE OF INORGANIC PHOSPHONATE RESIDUES IN GRAPEVINE PLANT PARTS, BERRIES AND WINES FROM SOURCES OTHER THAN FOLIAR SPRAYING

Inorganic phosphonates are known to effectively support the control of grapevine downy mildew in vi- ticulture. Their application helps the plant to induce an earlier and more effective pathogen defense. However, inorganic phosphonates have been banned in organic viticulture due to their classification as plant protection products since October 2013. Despite the ban, phosphonate has been recently detected in organic wines.