The adaptative capacity of a viticultural area (Valle Telesina, Southern Italy) to climate changes

Abstract

The viticulture aiming at the production of high quality wine is very important for the landscape conservation, because it allows to combine high farmer income with soil conservation. The quality of grape and wine is variety-specific and it depends significantly on the pedoclimatic conditions. The evolution of climate may thus endanger not only yield (IPCC, 2007) but, more significantly, the sustainability of current varieties. Adaptation of current production systems may be feasible, but requires a timely evaluation of whether adaptation to climate evolution might be limited to improving crop and soil management or should involve replacement of cvs or species altogether.
This study addressed this question by evaluating the adaptive capacity of a 20000 ha viticultural area in the “Valle Telesina” (Campania Region, Southern Italy). This area has a long tradition in the production of high quality wines (DOC and DOCG) and it is characterized by a complex geomorphology with a large soil and climate variability.
Two climate periods were considered: “past” (1984-1996) and “present” (2000-2009), which show a pattern of climate variability. The periods were taken as an example of different scenarios generated by climate changes.
The Amerine & Winkler index was calculated in each climate period and compared with the thermal requirements of a set of grapevine cvs, including the ones currently cultivated in the area.
Due to the observed trend of temperature increase from the “past” to the “present” period, differences were detected in the A&W index’s values and spatial distribution. When compared with the A&W indexes of the grape varieties the temperature increase resulted in a considerable increase of the area eligible to some varieties (Guarnaccia and Forastera) and a strong reduction of the area suitable for some of the most important current varieties (Aglianico and Falanghina).
Moreover, the hydrological model SWAP was applied to estimate the Crop Water Stress Index (CWSI) in the “present” climatic period, in order to evaluate the effects of the re-distribution of the cultivars over the study area on vineyards’ water balance.
This approach is being applied to other crops and other production systems towards quantitative, realistic studies on the adaptation of agriculture to climate evolution.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

A. Bonfante (1), A. Basile (1), F. De Lorenzi (1), G. Langella (1), F. Terribile (2), M. Menenti (3)

(1) Institute for Mediterranean Agricultural and Forest Systems (ISAFOM-CNR), Ercolano (NA), Italy
(2) University of Naples Federico II, Portici (NA), Italy
(3) Delft University of Technology, Delft, The Netherlands

Contact the author

Keywords

Grapevine adaptative capacity, Amerine & Winkler index, SWAP, Climate changes, quality viticulture

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Observatoire du Grenache en Vallée du Rhône: incidence du terroir sur la diversité analytique et sensorielle des vins

Rhone Valley A.O.C. Vineyards cover more than 70 000 hectares, of wich more than 40 000 plantedwith Grenache N. The Grenache observatory was created in 1995.

LCA: an effective, generalizable method for wine ecodesign? Advantages and limitations

Life cycle assessment (LCA) is an effective and comprehensive method for evaluating the environmental impact of a product, considering its entire life cycle. In the context of wine production, although the use of lca is gaining ground in viticulture, its application is still limited to the fine assessment of winemaking processes.

Grapes aminoacidic profile: impact of abiotic factors in a climate change scenario

Amino acids play a crucial role in determining grape and wine quality [1]. Recently, research has suggested their metabolism is key to plant abiotic stress tolerance [2]. Therefore, the study of amino acid accumulation in grape berries and its response to environmental factors is of both scientific and economic importance.

Sensory evaluation of grape berries: predictive power for sensory properties of Sauvignon blanc, Riesling and Pinot noir wines

Sensory analysis of grape berries is a common tool to evaluate the degree of grape maturation and to make sound picking decisions.

Soil fertility and confered vigour by rootstocks

The adaptation of rootstock to scion variety and soil determines largely the control of the vegetative growth for grapevine. Many experiments were performed in the vineyard to classify the rootstocks according to their soil adaptation and to their effect on vine vigour. So far there are no data describing the course of appearance of rootstock effects after plantation. Moreover the underlying mechanisms of conferred vigour remain largely unknown.