The adaptative capacity of a viticultural area (Valle Telesina, Southern Italy) to climate changes

Abstract

The viticulture aiming at the production of high quality wine is very important for the landscape conservation, because it allows to combine high farmer income with soil conservation. The quality of grape and wine is variety-specific and it depends significantly on the pedoclimatic conditions. The evolution of climate may thus endanger not only yield (IPCC, 2007) but, more significantly, the sustainability of current varieties. Adaptation of current production systems may be feasible, but requires a timely evaluation of whether adaptation to climate evolution might be limited to improving crop and soil management or should involve replacement of cvs or species altogether.
This study addressed this question by evaluating the adaptive capacity of a 20000 ha viticultural area in the “Valle Telesina” (Campania Region, Southern Italy). This area has a long tradition in the production of high quality wines (DOC and DOCG) and it is characterized by a complex geomorphology with a large soil and climate variability.
Two climate periods were considered: “past” (1984-1996) and “present” (2000-2009), which show a pattern of climate variability. The periods were taken as an example of different scenarios generated by climate changes.
The Amerine & Winkler index was calculated in each climate period and compared with the thermal requirements of a set of grapevine cvs, including the ones currently cultivated in the area.
Due to the observed trend of temperature increase from the “past” to the “present” period, differences were detected in the A&W index’s values and spatial distribution. When compared with the A&W indexes of the grape varieties the temperature increase resulted in a considerable increase of the area eligible to some varieties (Guarnaccia and Forastera) and a strong reduction of the area suitable for some of the most important current varieties (Aglianico and Falanghina).
Moreover, the hydrological model SWAP was applied to estimate the Crop Water Stress Index (CWSI) in the “present” climatic period, in order to evaluate the effects of the re-distribution of the cultivars over the study area on vineyards’ water balance.
This approach is being applied to other crops and other production systems towards quantitative, realistic studies on the adaptation of agriculture to climate evolution.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

A. Bonfante (1), A. Basile (1), F. De Lorenzi (1), G. Langella (1), F. Terribile (2), M. Menenti (3)

(1) Institute for Mediterranean Agricultural and Forest Systems (ISAFOM-CNR), Ercolano (NA), Italy
(2) University of Naples Federico II, Portici (NA), Italy
(3) Delft University of Technology, Delft, The Netherlands

Contact the author

Keywords

Grapevine adaptative capacity, Amerine & Winkler index, SWAP, Climate changes, quality viticulture

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Incidence de la nature du sol et du cépage sur la maturation du raisin, à Saint Emilion, en 1995

The AOC Saint-Emilion, one of the most prestigious in Bordeaux, is located on the right bank of the Dordogne upstream from Libourne. The vineyard is planted on Tertiary (Oligocene) and Quaternary geological formations, on which very varied soils have developed. Numerous studies have taken account of this heterogeneity and made it possible to better understand the functioning and viticultural potential of these soils (Duteau et al. 1981, Van Leeuwen, 1991).

Quantification of quercetin and quercetin-3-glucoside in Nebbiolo red wines

Quercetin-3-glucoside, a grape flavonol defence metabolite, is extracted during winemaking and may undergo subsequent degradation in wines. Hydrolysation reactions lead to the formation of the aglycone quercetin, which presents limited solubility in the wine matrix and can induce visible precipitations.

Towards a European data basis based of advanced multi-isotopic signatures and artificial intelligence: the wine in blue project

Major and trace elements are essential for the development of grapes used for the wine. They are primarily originating from the soil. Some elements are also seldomly added during the wine making process. Therefore, the largest spectrum of major, trace and ultra-trace elements in the final wine product is a good signature of its geographical origin. In the frame of the European tracewindu, we have developed a very original multi-isotopic dilution method using triple quadrupole icp/ms.

Rapid damage assessment and grapevine recovery after fire

There is increasing scientific consensus that climate changeis the underlying cause of the prolonged dry and hot conditions that have increased the risk of extreme fire weather in many countries around the world. In December 2019, a bushfire event occurred in the Adelaide Hills, South Australia where 25,000 hectares were burnt and in vineyards and surrounding areas various degrees of scorching and infrastructure damage occurred. The ability to coordinate and plan recovery after a fire event relies on robust and timely data. The current practice for measuring the scale and distribution of fire damage is to walk or drive the vineyard and score individual vines based on visual observation. The process is time consuming, subjective, or semi-quantitative at best. After the December 2019 fires, it took many months to access properties and estimate the area of vineyard damaged. This study compares the rapid assessment and mapping of fire damage using high-resolution satellite imagery with more traditional ground based measures. Satellite imagery tracking vineyard recovery in the season following the bushfire is being correlated to field assessments of vineyard productivity such as canopy health and development, fertility and carbohydrate storage. Canopy health in the seasons following the fires correlated to the severity of the initial fire damage. Severely damaged vines had reduced canopy growth, were infertile or had very low fertility as well as lower carbohydrate levels in buds and canes during dormancy, which reduced productivity in the seasons following the bushfire event. In contrast, vines that received minor damage were able to recover within 1-2 years. Tools that rapidly and affordably capture the extent and severity of damage over large vineyard area will allow producers, government and industry bodies to manage decisions in relation to fire recovery planning, coordination and delivery, improving the efficiency and effectiveness of their response.

RED WINE AGING THROUGH 1H-NMR METABOLOMICS

Premium red wines are often aged in oak barrel. This widespread winemaking process is used, among others, to provide roundness and complexity to the wine. The study of wine evolution during barrel aging is crucial to better ensure control of wine quality.
¹H-NMR has already been proved to be an efficient tool to monitor winemaking process [1]. Indeed, it is a non-destructive technique, it requires a small amount of sample and a short time of analysis, yet it provides clues about several chemical families.