Influenza dell’esposizione del vigneto sulla maturazione dell’uva

Abstract

[English version below]

Lo studio è stato condotto in vigneti commerciali di Vitis vinifera cv Nebbiolo localizzati in Piemonte, Italia del Nord-Ovest, intorno alla sommità di una collina. L’obiettivo dello studio è stato di determinare come l’esposizione del vigneto possa influenzare il comportamento vegetativo della vite, il manifestarsi delle fasi fenologiche, e la cinetica di maturazione dell’uva con particolare riguardo all’accumulo di antociani e flavonoli. Le esposizioni più meridionali hanno indotto precocità di germogliamento e fioritura ma diminuzione della fertilità per gemma e, di conseguenza, della resa per pianta influenzando anche il peso dei grappoli, degli acini e delle bucce; hanno promosso una maggiore concentrazione dei solidi solubili nelle ultime fasi di maturazione ma la sintesi degli antociani e dei flavonoli ha subito un rallentamento durante le fasi tardive di maturazione. L’esposizione occidentale ha favorito il ritardo delle fasi fenologiche e un aumento della fertilità per gemma, del peso del grappolo e della resa produttiva, determinando un minore accumulo di solidi solubili nel mosto ma una maggiore sintesi di antociani. Si è evidenziata, in oltre, una probabile influenza della temperatura non solo sulla sintesi degli antociani ma anche dei flavonoli delle bucce.

The study was conducted in Sinio (Piedmont, Northwest Italy) in commercial vineyards of Vitis vinifera cv. Nebbiolo, situated on the top of a 30 % slope hillside, thus they were differently exposed: two of these (A) was exposed to South, another (B) to East-South-East, the fourth (C) to West-North-West. The clone CVT 141 grafted onto 420 A, was cultivated in every vineyard. Vines were VSP trained and pruned to the Guyot system (10 bud cane plus 2 bud spur). Vine theoretical density was 5200 vine/ha. The aim of this study was to determine how the vineyard exposition influences vine vegetative behaviour, phenological phase timing, grape ripening kinetic and grape properties including colour and flavonols. The results were used to characterize the vineyards in a sort of farm zoning, helping to choose the best technical management.
The 2009 vintage was characterized by a very rainy winter and spring, and a very hot summer (from mid July until the beginning of September the maximum temperature, as average, exceeded 32 °C). Bud burst and flowering resulted delayed in C, respect to A and B vineyards, whereas bud fertility was higher in C. That fact induced a higher bunch weight (313 g) in vineyard facing West (C), respect to those Southward (A and D) where bunch weight was similar (224 g) also thanks to a higher berry mass (1.87 g in A and D, 2.09 g in B, and 2.07 g in C). Furthermore, vineyard exposition influenced the vine vigour and yield that in C and D were twice that in A and B vineyards. Soluble solid content at harvest appeared higher in A, B and D (24.3 Brix as average) than in C vineyard (23.7 Brix). Southern expositions (A and D) delayed the beginning of veraison and reduced the anthocyanin concentration at harvest (600 mg/kg) respect to B (670 mg/kg) and C (770 mg/k); further differences among vineyards were observed both in the pattern of flavonol accumulation and in their concentration at harvest. In synthesis the Southern expositions advanced the phenological phases and decreased bud fertility, yield per vine and weight of bunches, berries and berry skins. In addition, it promoted a high concentration of soluble solids at harvest but not of anthocyanins whose concentration slowed down during the late phases of ripening. Western exposition (C) promoted a delay of phenological phases, and an increase of bud fertility, bunch weight and yield per vine; it induced a medium accumulation of soluble solids but the highest synthesis of anthocyanins. Due to the global warming we can expect a high variability between vintages from a weather point of view. We think that a sort of farm zoning matched with data obtained from observations executed in successive vintages could be a useful help to choose the best technical management for a specific year and to foresee in advance the vintage results.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

Guidoni S., Gangemi L., Ferrandino A.

Dipartimento di Colture Arboree, Università di Torino, Via L. Da Vinci, 44. 10095 Grugliasco (TO), Italy

Contact the author

Keywords

Nebbiolo, fasi fenologiche, produttività, antociani, flavonoli
Nebbiolo, phenological phases, yield, anthocyanins, flavonols

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Pests and biodiversity management on a climate change scenario: A practical case

The weather anomalies comparing the 1971-2000 time frame and the last years has showned a dramatic scenario when, in some months, average temperature in above 3ºC and the reduction in precipitation in more than 30%.

Reaction Mechanisms of Copper and Iron with Hydrogen Sulfide and Thiols in Model Wine

Fermentation derived sulfidic off-odors due to hydrogen sulfide (H2S) and low molecular weight thiols are commonly encountered in wine production and removed by Cu(II) fining. However, the mechanism underlying Cu(II) fining remains poorly understood, and generally results in increased Cu concentration that lead to deleterious reactions in finished wine. The present study describes a mechanistic investigation of the iron and copper mediated reaction of H2S, cysteine, 3-sulfanylhexan-1-ol, and 6-sulfanylhexan-1-ol with oxygen. The concentrations of H2S, thiols, oxygen, and acetaldehyde were monitored over time. It was found that Cu(II) was rapidly reduced by both H2S and thiols to Cu(I).

Identification of cis-2-methyl-4-propyl-1,3-oxathiane as a new volatile sulfur compound (VSC) in wine

Despite their trace concentrations, volatile sulfur compounds (VSCs) are an important category of flavour-active compounds that significantly contribute to desirable or undesirable aromas of many foods and beverages. In wines, VSCs in the form of polyfunctional thiols, notably 3-sulfanylhexan-1-ol (3-SH), 3-sulfanylhexyl acetate (3-SHA), and 4-sulfanyl-4-methyl-pentan-2-one (4-MSP), possess extremely low olfactory thresholds (≈ ng/L) and pleasant “tropical aroma” notes. They have received much attention with respect to their sensory contributions, quantitative occurrences, biogenesis, and thiol management through viticulture and winemaking. However, the fate of these potent volatiles are still not fully understood.

Water deficit differentially impacts the performances and the accumulation of grape metabolites of new varieties tolerant to fungi

The use of resistant varieties is a long-term but promising solution to reduce chemical input in viticulture. Several important breeding programs in Europe and abroad are now releasing a range of new hybrids performing well regarding fungi susceptibility and producing good quality wines. Unfortunately, insufficient attention is paid by the breeders to the adaptation of these varieties to climatic changes, notably to the increased climatic demand and water deficit (WD). Thus, prior to the adoption of such varieties by the wine industry in Mediterranean regions, there is a need to consider their suitability to WD. This study aimed to characterize the different drought-strategies adopted by 6 new resistant varieties selected by INRAE in comparison to Syrah. To allow the assessment of long-term impacts of WD, field-grown vines were exposed to contrasted WD from 2018 to 2021 under a semi-arid Mediterranean climate. A gradient of WD was applied in the field and controlled through plant measurements at the single plant level. Grape development was non-destructively monitored to determine the arrest of berry phloem unloading. The impacts of WD on berry composition, including water, primary metabolites (sugars, organic acids), secondary metabolites (anthocyanins, thiols precursors) and main cations contents, were assessed at this specific stage. Results showed different varietal responses during the year and inter-annual acclimation in terms of plant water use efficiency, biomass accumulation, as well as yield components and berry composition. WD differentially reduced the accumulation of primary metabolites at plant and berry levels, but it little changed their concentrations in the fruits at the ripe stage. Moreover, WD differentially impacted the accumulation of secondary metabolites and major cations between the varieties. In the talk, we’ll present the main results regarding the WD impacts on fruit metabolites and enlarge the reflection about the practical assessment of the grapevine acclimation to WD.

Ozone to improve the implantation of Lachancea thermotolerans for improving pH in warm areas in wines with low SO2 levels

Una de las biotecnologías más potentes para disminuir el pH en vinos de zonas cálidas y en variedades de pH elevado es el uso de la levadura no-saccharomyces lachancea thermotolerans. Esta especie es capaz de formar ácido láctico a partir de azúcares, reduciendo al mismo tiempo ligeramente el grado alcohólico. Por lo tanto, mejora dos de los principales problemas de los vinos de regiones afectadas por el calentamiento global. El ácido láctico es un ácido orgánico con una buena integración sensorial en el sabor del vino, y también química y biológicamente estable durante el envejecimiento del vino.