Terroir 2010 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2010 9 Geology and Soil: effects on wine quality (T2010) 9 Geologic and geomorphologic features applied for identification of wine terroir units by digital image processing, spectroradiometric and GIS techniques in Encruzilhada do Sul, RS, Brazil

Geologic and geomorphologic features applied for identification of wine terroir units by digital image processing, spectroradiometric and GIS techniques in Encruzilhada do Sul, RS, Brazil

Abstract

Results in the characterization of a new wine terroir unit in south Brazil are reported. Presently, several areas in Brazil are being studied, in an effort to define new wine terroirs and improve the quality of Brazilian wines. This paper reports what is being done, by Embrapa (Brazilian Agricultural Research Corporation) and its partners Remote Sensing and Meteorological Research Center (CEPSRM/UFRGS) and Brazilian Geological Survey (CPRM), in the Encruzilhada do Sul region, at Rio Grande do Sul State, that is part of the Serra do Sudeste viticultural region. Satellite images from several sources (SRTM, ASTER, ALOS) were used, together with field data (rock samples). Digital elevation models were built and used to define areas with slopes and solar expositions adequate to vine growing, with altitudes above 350 m. Spectroradiometry of rock samples was performed, to identify several minerals (montmorilonite, illite, pyrophilite and kaolinite). Geologic maps were used to locate rock types to collected in field trips; those rocks had their spectral response extracted from radiometry, and fitted to the six bands of ASTER SWIR subsystem, resulting in a map of the distribution of these rocks in some areas of interest. Two wineries were more closely studied. The first area produces wine from 35 hectares of Cabernet Sauvignon, Merlot, Nebbiolo, Pinot Noir and Chardonnay. The other winery has 61 hectares and produces Pinot Noir and Chardonnay grapes for sparkling wines. The study concludes that the use of remote sensing resources and associated geotechnologies are effective to terroir studies.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

Rosemary Hoff (1), Jorge Ricardo Ducati (2), Magda Bergmann (3)

(1) Embrapa Uva e Vinho/CNPUV – Empresa Brasileira de Pesquisa Agropecuária – Rua Livramento, 515 – 95700-000 – Bento Gonçalves – RS – Brasil
(2) Centro Estadual de Pesquisas em Sensoriamento Remoto e Meteorologia/CEPSRM – Universidade Federal do Rio Grande do Sul – Av. Bento Gonçalves, 9500 – 91501-970 – Porto Alegre – RS – Brasil
(3) Companhia de Pesquisa de Recursos Minerais/CPRM – Serviço Geológico do Brasil – Rua Banco da Província, 105 – CEP 90840-030 – Porto Alegre – Brasil

Contact the author

Keywords

Brazilian wines, geology, geomorphology, spectroradiometry, geographical information system

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

IMPACT OF FINING WITH K-CARRAGEENAN, BENTONITE, AND CHITOSAN ON PROTEIN STABILITY AND MACROMOLECULAR COMPOUNDS OF ALBARIÑO WHITE WINE PRODUCED WITH AND WITHOUT PRE-FERMENTATIVE SKIN MACERATION

Pre-fermentative skin maceration is a technique used in white wine production to enhance varietal aroma, but it can increase protein concentration, leading to protein instability and haze formation [1]. To prevent protein instability, wine producers typically use fining agents such as bentonite, before wine bottling, which can negatively impact sensory characteristics and produce waste [2,3]. The aim of this study was to understand the impact of alternative techniques such as the application of polysaccharides (k-carrageenan and chitosan) on protein stability and on the wine macromolecular composition.

Influence of a spontaneous cover crop on the vineyard and soil erosion under Mediterranean climate

Sixty five % of the agricultural area of the Basque Country located in the DO Ca Rioja corresponds to vineyards. More than 40% of it has an average slope greater than 10%, which makes it sensitive to erosive processes. Furthermore, it is foreseeable that extreme weather events (storms, hail, extreme heat and cold, etc.) will be favored due to climate change. Cover cropping can mitigate this risk, and therefore the objective of this work is to evaluate the impact that a vegetable cover has on the agronomic behavior of the vineyard, the quality of the grape and soil erosion. For this, a trial has been carried out with a Graciano variety vineyard with a slope between 10% -20% during the years 2020 and 2021. Conventional tillage management in the area has been compared (4-6 passes per year of tillage machinery) versus spontaneous vegetation cover management in the vineyard. This implies not tilling and allowing the grass of the land to colonize the range between the lines of vines, controlling their height through 1-3 mowing passes per year, always trying to affect the surface of the land as little as possible. The vegetative growth, yield and quality of the grape and wine was measured. Furthermore, erosion has been measured using Gerlasch boxes. The yield was lower in the second year of the trial in the cover crop treatment, but erosion was significantly reduced.

Metal reducing agents (Fe and Al) as possible agents to measure the dimensions of the hydrogen sulfide (H2S) pool of precursors in wines

Reductive wine fault is characterized by the presence of odors such as rotten eggs or spoiled camembert cheese, originating from hydrogen sulfide (H2S) and methanethiol (MeSH) [1]. These compounds stabilize in polysulfide forms, creating a complex pool of precursors that will revert to both molecules when the environment becomes anoxic [2].

Effects of graft quality on growth and grapevine-water relations

Climate change is challenging viticulture worldwide compromising its sustainability due to warmer temperatures and the increased frequency of extreme events. Grafting Vitis vinifera L.

Iso-/anisohydric behavior in wine grapes may be a matter of soil moisture

There are claims that wine grape cultivars are either isohydric or anisohydric; the former maintaining, and the latter decreasing, their plant water status as soil moisture declines. However, available information is inconsistent. There are those that show an existence of a continuum in cultivar response to soil moisture rather than a distinct categorization. Others even show both behaviors in the same cultivar grown in different environments. In this study we investigated the behavior of 30 own rooted Vitis vinifera cultivars during successive drydown and rewatering cycles over two growing seasons in arid eastern Washington (<200 mm annual precipitation).