Terroir 2010 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2010 9 Geology and Soil: effects on wine quality (T2010) 9 Geologic and geomorphologic features applied for identification of wine terroir units by digital image processing, spectroradiometric and GIS techniques in Encruzilhada do Sul, RS, Brazil

Geologic and geomorphologic features applied for identification of wine terroir units by digital image processing, spectroradiometric and GIS techniques in Encruzilhada do Sul, RS, Brazil

Abstract

Results in the characterization of a new wine terroir unit in south Brazil are reported. Presently, several areas in Brazil are being studied, in an effort to define new wine terroirs and improve the quality of Brazilian wines. This paper reports what is being done, by Embrapa (Brazilian Agricultural Research Corporation) and its partners Remote Sensing and Meteorological Research Center (CEPSRM/UFRGS) and Brazilian Geological Survey (CPRM), in the Encruzilhada do Sul region, at Rio Grande do Sul State, that is part of the Serra do Sudeste viticultural region. Satellite images from several sources (SRTM, ASTER, ALOS) were used, together with field data (rock samples). Digital elevation models were built and used to define areas with slopes and solar expositions adequate to vine growing, with altitudes above 350 m. Spectroradiometry of rock samples was performed, to identify several minerals (montmorilonite, illite, pyrophilite and kaolinite). Geologic maps were used to locate rock types to collected in field trips; those rocks had their spectral response extracted from radiometry, and fitted to the six bands of ASTER SWIR subsystem, resulting in a map of the distribution of these rocks in some areas of interest. Two wineries were more closely studied. The first area produces wine from 35 hectares of Cabernet Sauvignon, Merlot, Nebbiolo, Pinot Noir and Chardonnay. The other winery has 61 hectares and produces Pinot Noir and Chardonnay grapes for sparkling wines. The study concludes that the use of remote sensing resources and associated geotechnologies are effective to terroir studies.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

Rosemary Hoff (1), Jorge Ricardo Ducati (2), Magda Bergmann (3)

(1) Embrapa Uva e Vinho/CNPUV – Empresa Brasileira de Pesquisa Agropecuária – Rua Livramento, 515 – 95700-000 – Bento Gonçalves – RS – Brasil
(2) Centro Estadual de Pesquisas em Sensoriamento Remoto e Meteorologia/CEPSRM – Universidade Federal do Rio Grande do Sul – Av. Bento Gonçalves, 9500 – 91501-970 – Porto Alegre – RS – Brasil
(3) Companhia de Pesquisa de Recursos Minerais/CPRM – Serviço Geológico do Brasil – Rua Banco da Província, 105 – CEP 90840-030 – Porto Alegre – Brasil

Contact the author

Keywords

Brazilian wines, geology, geomorphology, spectroradiometry, geographical information system

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Dissecting the polysaccharide‐rich grape cell wall matrix during the red winemaking process, using high‐throughput and fractionation methods

Limited information is available on grape wall-derived polymeric structure/composition and how this changes during fermentation. Commercial winemaking operations use enzymes that target the polysaccharide-rich polymers of the cell walls of grape tissues to clarify musts and extract pigments during the fermentations. In this study we have assessed changes in polysaccharide composition/ turnover throughout the winemaking process by applying recently developed cell wall profiling approaches to both wine and pomace polysaccharides. The methods included gas chromatography for monosaccharide composition (GC-MS), infra-red (IR) spectroscopy and comprehensive microarray polymer profiling
(CoMPP) using cell wall probes.

“Terroir” and grape and wine quality of native grape variety Istrian Malvasia

Viticulture and wine production have a historical tradition in Istria. First written document of vine cultivation in this area date since antiquity. The most wide spread vine variety in Istria is Istrian Malvasia (white variety), and it capture about 60% of total vineyard surface in Istria today.

Soil management as a key factor on vineyard behavior under semiarid conditions: effects on soil biological activity, plant water and nutrient status, and grape yield and quality

Aims: Viticulture practices linked with soil management, as cover crops and deficit irrigation, can help to regulate the vineyard behavior reducing in most cases plant vigor and modifying plant water and nutrient status, and as a consequence, grape yield and quality. Also, these practices can modify the soil biological activity mostly related to microbiome diversity and functionality.

Optimization of a tool to determine the oxygen avidity of a wine through the kinetics of consumption by its phenolic and aromatic fractions (PAFs)

Wine oxidation phenomena during the different processes of winemaking, aging and storage are closely related to the presence of oxygen and to the wine’s capacity for consumption.

The rootstock, the neglected player in the scion transpiration even during the night

Water is the main limiting factor for yield in viticulture. Improving drought adaptation in viticulture will be an increasingly important issue under climate change. Genetic variability of water deficit responses in grapevine partly results from the rootstocks, making them an attractive and relevant mean to achieve adaptation without changing the scion genotype. The objective of this work was to characterize the rootstock effect on the diurnal regulation of scion transpiration. A large panel of 55 commercial genotypes were grafted onto Cabernet Sauvignon. Three biological repetitions per genotype were analyzed. Potted plants were phenotyped on a greenhouse balance platform capable of assessing real-time water use and maintaining a targeted water deficit intensity. After a 10 days well-watered baseline period, an increasing water deficit was applied for 10 days, followed by a stable water deficit stress for 7 days. Pruning weight, root and aerial dry weight and transpiration were recorded and the experiment was repeated during two years. Transpiration efficiency (ratio between aerial biomass and transpiration) was calculated and δ13C was measured in leaves for the baseline and stable water deficit periods. A large genetic variability was observed within the panel. The rootstock had a significant impact on nocturnal transpiration which was also strongly and positively correlated with maximum daytime transpiration. The correlations with growth and water use efficiency related traits will be discussed. Transpiration data were also related with VPD and soil water content demonstrating the influence of environmental conditions on transpiration. These results highlighted the role of the rootstock in modulating water deficit responses and give insights for rootstock breeding programs aimed at identifying drought tolerant rootstocks. It was also helpful to better define the mechanisms on which the drought tolerance in grapevine rootstocks is based on.