Terroir 2010 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2010 9 Geology and Soil: effects on wine quality (T2010) 9 Geologic and geomorphologic features applied for identification of wine terroir units by digital image processing, spectroradiometric and GIS techniques in Encruzilhada do Sul, RS, Brazil

Geologic and geomorphologic features applied for identification of wine terroir units by digital image processing, spectroradiometric and GIS techniques in Encruzilhada do Sul, RS, Brazil

Abstract

Results in the characterization of a new wine terroir unit in south Brazil are reported. Presently, several areas in Brazil are being studied, in an effort to define new wine terroirs and improve the quality of Brazilian wines. This paper reports what is being done, by Embrapa (Brazilian Agricultural Research Corporation) and its partners Remote Sensing and Meteorological Research Center (CEPSRM/UFRGS) and Brazilian Geological Survey (CPRM), in the Encruzilhada do Sul region, at Rio Grande do Sul State, that is part of the Serra do Sudeste viticultural region. Satellite images from several sources (SRTM, ASTER, ALOS) were used, together with field data (rock samples). Digital elevation models were built and used to define areas with slopes and solar expositions adequate to vine growing, with altitudes above 350 m. Spectroradiometry of rock samples was performed, to identify several minerals (montmorilonite, illite, pyrophilite and kaolinite). Geologic maps were used to locate rock types to collected in field trips; those rocks had their spectral response extracted from radiometry, and fitted to the six bands of ASTER SWIR subsystem, resulting in a map of the distribution of these rocks in some areas of interest. Two wineries were more closely studied. The first area produces wine from 35 hectares of Cabernet Sauvignon, Merlot, Nebbiolo, Pinot Noir and Chardonnay. The other winery has 61 hectares and produces Pinot Noir and Chardonnay grapes for sparkling wines. The study concludes that the use of remote sensing resources and associated geotechnologies are effective to terroir studies.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

Rosemary Hoff (1), Jorge Ricardo Ducati (2), Magda Bergmann (3)

(1) Embrapa Uva e Vinho/CNPUV – Empresa Brasileira de Pesquisa Agropecuária – Rua Livramento, 515 – 95700-000 – Bento Gonçalves – RS – Brasil
(2) Centro Estadual de Pesquisas em Sensoriamento Remoto e Meteorologia/CEPSRM – Universidade Federal do Rio Grande do Sul – Av. Bento Gonçalves, 9500 – 91501-970 – Porto Alegre – RS – Brasil
(3) Companhia de Pesquisa de Recursos Minerais/CPRM – Serviço Geológico do Brasil – Rua Banco da Província, 105 – CEP 90840-030 – Porto Alegre – Brasil

Contact the author

Keywords

Brazilian wines, geology, geomorphology, spectroradiometry, geographical information system

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Unleashing the power of artificial intelligence for viticulture and oenology on earth and space

Implementing artificial intelligence (AI) in viticulture and enology is a rapidly growing field of research with an essential number of potential practical applications.

Collective management for landscape and biodiversity conservation in viticulture: The Life + BioDiVine project

Environmental awareness is globally rising among scientific community, politicians and general public. Biodiversity conservation is becoming a concern for farmers

Mineral-wine profile and AI: wine authentication and identification

Enhancing the mineral wine profile: from authentication to identification by artificial intelligence for enhanced security. Analysis of a wine’s mineral concentration profile provides a distinctive fingerprint for each cuvée. Unlike organic profiles, this identification signature remains stable over time and can be deciphered using direct analysis by inductively coupled mass spectrometry (icp-ms).

Comparison of tannin analysis by protein precipitation and normal-phase HPLC

Tannins are a heterogenous class of polymeric phenolics found in grapes, oak barrels and wine. In red wine tannins are primarily responsible for astringency, though they also have an important role in reacting with and stabilizing pigments. There are numerous sub-classes of tannins found in wine but they all share structural heterogeneity within each sub-class, with varied polymer composition, configuration and length.

Numerous methodologies exist for the quantification of tannins, however, protein precipitation using bovine serum albumin has proved itself useful due to its strong correlation to the sensory perception of astringency and the basic instruments required for the method. Though the method can yield valuable insights into tannin composition, it cannot be automated easily and necessitates well-trained personnel.

Impact of mannoproteins structural features on the colloid stability when facing different kinds of wine polyphenols

The aim was to study the impact of structural features in the polysaccharide moiety of mannoproteins on their interaction with polyphenols and the formation of colloidal aggregates.