Terroir 2010 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2010 9 Geology and Soil: effects on wine quality (T2010) 9 Geologic and geomorphologic features applied for identification of wine terroir units by digital image processing, spectroradiometric and GIS techniques in Encruzilhada do Sul, RS, Brazil

Geologic and geomorphologic features applied for identification of wine terroir units by digital image processing, spectroradiometric and GIS techniques in Encruzilhada do Sul, RS, Brazil

Abstract

Results in the characterization of a new wine terroir unit in south Brazil are reported. Presently, several areas in Brazil are being studied, in an effort to define new wine terroirs and improve the quality of Brazilian wines. This paper reports what is being done, by Embrapa (Brazilian Agricultural Research Corporation) and its partners Remote Sensing and Meteorological Research Center (CEPSRM/UFRGS) and Brazilian Geological Survey (CPRM), in the Encruzilhada do Sul region, at Rio Grande do Sul State, that is part of the Serra do Sudeste viticultural region. Satellite images from several sources (SRTM, ASTER, ALOS) were used, together with field data (rock samples). Digital elevation models were built and used to define areas with slopes and solar expositions adequate to vine growing, with altitudes above 350 m. Spectroradiometry of rock samples was performed, to identify several minerals (montmorilonite, illite, pyrophilite and kaolinite). Geologic maps were used to locate rock types to collected in field trips; those rocks had their spectral response extracted from radiometry, and fitted to the six bands of ASTER SWIR subsystem, resulting in a map of the distribution of these rocks in some areas of interest. Two wineries were more closely studied. The first area produces wine from 35 hectares of Cabernet Sauvignon, Merlot, Nebbiolo, Pinot Noir and Chardonnay. The other winery has 61 hectares and produces Pinot Noir and Chardonnay grapes for sparkling wines. The study concludes that the use of remote sensing resources and associated geotechnologies are effective to terroir studies.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

Rosemary Hoff (1), Jorge Ricardo Ducati (2), Magda Bergmann (3)

(1) Embrapa Uva e Vinho/CNPUV – Empresa Brasileira de Pesquisa Agropecuária – Rua Livramento, 515 – 95700-000 – Bento Gonçalves – RS – Brasil
(2) Centro Estadual de Pesquisas em Sensoriamento Remoto e Meteorologia/CEPSRM – Universidade Federal do Rio Grande do Sul – Av. Bento Gonçalves, 9500 – 91501-970 – Porto Alegre – RS – Brasil
(3) Companhia de Pesquisa de Recursos Minerais/CPRM – Serviço Geológico do Brasil – Rua Banco da Província, 105 – CEP 90840-030 – Porto Alegre – Brasil

Contact the author

Keywords

Brazilian wines, geology, geomorphology, spectroradiometry, geographical information system

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

High resolution climate spatial analysis of European winegrowing regions

Climate strongly affects the geographical distribution of grape varieties, grapevine cultivation techniques and wine organoleptic properties.

The effect of Nitrogen and Sulphur foliar applications in hot climates

ine nitrogen deficiency can negatively influence the aroma profile and ageing potential of white wines. Canopy management can alter vine microclimate, affect the nitrogen availability and influence the response of leaf senescence. Increasing the nitrogen availability to vines can increase the Yeast Assimilable Nitrogen (YAN) levels in harvested fruit and wine. Studies show that foliar nitrogen and sulphur applications at véraison, on low YAN Sauvignon blanc grapes have an effect on the level of amino acids (Jreij et al. 2009) and on S-containing compounds such as glutathione and thiols (Lacroux et al. 2008), which in turn can influence the formation of major volatiles and the aroma profile of the wine.

The development of a simple electrochemical method based on molecularly imprinted polymers for the selective determination of caffeic acid in wine

Caffeic acid (CA) is an antioxidant of great importance in the food sector, such as wine, where it acts as a marker of wine ageing, as well as in the health sector due to its antioxidant properties and beneficial effects including the prevention of inflammation, cancer, neurodegenerative diseases, and diabetes.

LARGE-SCALE PHENOTYPIC SCREENING OF THE SPOILAGE YEAST BRETTANOMYCES BRUXELLENSIS: UNTANGLING PATTERNS OF ADAPTATION AND SELECTION, AND CONSEQUENCES FOR INNOVATIVE WINE TREATMENTS

Brettanomyces bruxellensis is considered as the main spoilage yeast in oenology. Its presence in red wine leads to off-flavour due to the production of volatile phenols such as 4-vinylphenol, 4-vinylguaiacol, 4-ethylphenol and 4-ethylguaiacol, whose aromatic notes are unpleasant (e.g. animal, leather, horse or pharmaceutical). Beside wine, B. bruxellensis is commonly isolated from beer, kombucha and bioethanol production, where its role can be described as negative or positive. Recent genomic studies unveiled the existence of various populations.

Impact of environmental conditions in vscs production during wine fermentation by Saccharomyces cerevisiae

The aroma of wine is one of the most important determinants of quality as it strongly influences the consumer’s acceptance or rejection. Among the thousands of molecules comprising the wine aroma, sulfur-containing compounds can be considered as a “double-edged sword”: some of them, deriving from varietal precursors provide fruity pleasant aromas, while other ones, produced by yeast metabolism are related to “unpleasant” aromas