Terroir 2010 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2010 9 Geology and Soil: effects on wine quality (T2010) 9 Evaluation of two transmittance meters in estimating chlorophyll and nitrogen concentrations in grapevine cultivars

Evaluation of two transmittance meters in estimating chlorophyll and nitrogen concentrations in grapevine cultivars

Abstract

Two transmittance-based chlorophyll meters (SPAD-502 and CCM-200) were evaluated in estimating chlorophyll (Chl) and nitrogen (N) levels in grapevine leaves. The study was conducted in a fertilization experiment [0 (N0), 60 (N1) and 120 (N2) kg N/ha] during the summer 2009, in two commercial vineyards located in Northern Greece and planted with cvs Cabernet-Sauvignon and Xinomavro (Vitis vinifera L.). When data were pooled over cultivars and samplings, leaves of N2 vines had the highest N and Chl content, as well as SPAD and CCM readings, followed by the respective values of N1. However, neither of the devices could detect the seasonal decline in leaf N and Chl content. Significant relationships between extracted Chl and measured leaf N were found in both cultivars. A strong linear function related SPAD and CCM readings in both cultivars. Total Chl and N were strongly correlated with SPAD and CCM readings in Cabernet Sauvignon (p<0.001) while relationships were poor for SPAD and not significant for CCM in Xinomavro. The results suggest that non-destructive chlorophyll estimations by transmittance-based meters are not applicable in all situations without specific estimations by transmittance-based meters are not applicable in all situations without specific calibrations necessary to improve their utility and accuracy over grapevine cultivars.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

D. Taskos (1), K. Karakioulakis (2), N. Theodorou (2), J.T. Tsialtas (3), E. Zioziou (2), N. Nikolaou(2), S. Koundouras (2)

(1) Boutari S.A., Goumenissa Winery, 613 00 Goumenissa, Greece
(2) Laboratory of Viticulture, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece
(3) NAGREF, Cotton and Industrial Plants Institute, 574 00 Sindos, Greece

Contact the author

Keywords

SPAD-502, CCM-200, chlorophyll, nitrogen, grapevine, N fertilization

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Seasonal vine nutrient dynamics and distribution of shiraz grapevines

The nutrient reserves in the grapevine perennial structure perform a critical role in supplying the grapevine with nutrients

Phenolic compounds of wine spirits resulting from different ageing technologies: behaviour during the storage in bottle

Phenolic compounds are released from the wood into the wine spirit (WS) during the ageing process, and are of utmost importance to the colour, flavour, taste and the overall quality acquired by this spirit drink.1 Their concentrations in the WS and the related effects mainly depend on the kind of wood (oaks vs chestnut), toasting level and ageing technology (traditional using wooden barrels vs alternative).1,2,3

The Wine Active Compounds (WAC) conference 2022

The 5th edition of the International Conference Series on Wine Active Compounds (WAC) will be held from 29 June to 1 July 2022 (Dijon, France). All authors with accepted abstracts will have the possibility to publish either a short 4-pages article or a...

Terroir analysis and its complexity

Terroir is not only a geographical site, but it is a more complex concept able to express the “collective knowledge of the interactions” between the environment and the vines mediated through human action and “providing distinctive characteristics” to the final product (OIV 2010). It is often treated and accepted as a “black box”, in which the relationships between wine and its origin have not been clearly explained. Nevertheless, it is well known that terroir expression is strongly dependent on the physical environment, and in particular on the interaction between soil-plant and atmosphere system, which influences the grapevine responses, grapes composition and wine quality. The Terroir studying and mapping are based on viticultural zoning procedures, obtained with different levels of know-how, at different spatial and temporal scales, empiricism and complexity in the description of involved bio-physical processes, and integrating or not the multidisciplinary nature of the terroir. The scientific understanding of the mechanisms ruling both the vineyard variability and the quality of grapes is one of the most important scientific focuses of terroir research. In fact, this know-how is crucial for supporting the analysis of climate change impacts on terroir resilience, identifying new promised lands for viticulture, and driving vineyard management toward a target oenological goal. In this contribution, an overview of the last findings in terroir studies and approaches will be shown with special attention to the terroir resilience analysis to climate change, facing the use and abuse of terroir concept and new technology able to support it and identifying the terroir zones.

Infrared spectroscopy investigation of fresh grapevine organs for clustering and classification.

The spectral information acquired from fresh whole grapevine organs have yet to be fully explored. Infrared spectroscopy provides the means to rapidly measure fresh plant material and providing extensive information on the physical and chemical structure of samples.