Terroir 2010 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2010 9 Geology and Soil: effects on wine quality (T2010) 9 Evaluation of two transmittance meters in estimating chlorophyll and nitrogen concentrations in grapevine cultivars

Evaluation of two transmittance meters in estimating chlorophyll and nitrogen concentrations in grapevine cultivars

Abstract

Two transmittance-based chlorophyll meters (SPAD-502 and CCM-200) were evaluated in estimating chlorophyll (Chl) and nitrogen (N) levels in grapevine leaves. The study was conducted in a fertilization experiment [0 (N0), 60 (N1) and 120 (N2) kg N/ha] during the summer 2009, in two commercial vineyards located in Northern Greece and planted with cvs Cabernet-Sauvignon and Xinomavro (Vitis vinifera L.). When data were pooled over cultivars and samplings, leaves of N2 vines had the highest N and Chl content, as well as SPAD and CCM readings, followed by the respective values of N1. However, neither of the devices could detect the seasonal decline in leaf N and Chl content. Significant relationships between extracted Chl and measured leaf N were found in both cultivars. A strong linear function related SPAD and CCM readings in both cultivars. Total Chl and N were strongly correlated with SPAD and CCM readings in Cabernet Sauvignon (p<0.001) while relationships were poor for SPAD and not significant for CCM in Xinomavro. The results suggest that non-destructive chlorophyll estimations by transmittance-based meters are not applicable in all situations without specific estimations by transmittance-based meters are not applicable in all situations without specific calibrations necessary to improve their utility and accuracy over grapevine cultivars.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

D. Taskos (1), K. Karakioulakis (2), N. Theodorou (2), J.T. Tsialtas (3), E. Zioziou (2), N. Nikolaou(2), S. Koundouras (2)

(1) Boutari S.A., Goumenissa Winery, 613 00 Goumenissa, Greece
(2) Laboratory of Viticulture, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece
(3) NAGREF, Cotton and Industrial Plants Institute, 574 00 Sindos, Greece

Contact the author

Keywords

SPAD-502, CCM-200, chlorophyll, nitrogen, grapevine, N fertilization

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Using δ13C and hydroscapes as a tool for discriminating cultivar specific drought response

Measurement of carbon isotope discrimination in berry juice sugars at maturity (δ13C) provides an integrated assessment of water use efficiency (WUE) during the period of berry ripening, and when collected over multiple seasons can be used as an indication of drought stress response. Berry juice δ13C measurements were carried out on 48 different varieties planted in a common garden experiment in Bordeaux, France from 2014 through 2021 and were paired with midday and predawn leaf water potential measurements on the same vines in a subset of six varieties. The aim was to discriminate a large panel of varieties based on their stomatal behaviour and potentially identify hydraulic traits characterizing drought tolerance by comparing δ13C and hydroscapes (the visualisation of plant stomatal behaviour as a response to predawn water potential). Cluster analysis found that δ13C values are likely affected by the differing phenology of each variety, resulting in berry ripening of different varieties taking place under different stress conditions within the same year. We accounted for these phenological differences and found that cluster analysis based on specific δ13C metrics created a classification of varieties that corresponds well to our current empirical understanding of their relative drought tolerances. In addition, we analysed the water potential regulation of the subset of six varieties (using the hydroscape approach) and found that it was well correlated with some δ13C metrics. Surprisingly, a variety’s water potential regulation (specifically its minimum critical leaf water potential under water deficit) was strongly correlated to δ13C values under well-watered conditions, suggesting that base WUE may have a stronger impact on drought tolerance than WUE under water deficit. These results give strong insights on the innate WUE of a very large panel of varieties and suggest that studies of drought tolerance should include traits expressed under non-limiting conditions.

Targeted UHPLC-QqQ-MS/MS metabolomics for phenol identification in grapevine and wine: study of a Tempranillo clone with a dark-blue berry colour

Grapevine vegetative multiplication allows the accumulation of spontaneous mutations and increase intra-cultivar genetic diversity that can be exploited to maintain grape wine quality

Survey of pesticide residues in vineyard soils from the Denomination of Origin Ribeiro

Vineyards from mild temperature, high humidity locations receive often treatments with fungicides to prevent damages produced by fungi responsible for mildium, oidium and botrytis infections. In addition, insecticides are also applied to vineyards to fight again pests, which affect directly, or indirectly (as vectors of different diseases), their productivity. A fraction of the above compounds reaches the soil of vineyards, either during application, or when released from the canopy of vines due to rain-wash-off. Thereafter, depending on soil conditions (pH, organic matter) and environmental variables (regimen of rain, slope of vineyards), they might persist in this compartment, be degraded and/or transferred to water masses, modifying the biodiversity of soils and/or affecting the quality of water reservoirs.

Evaluating Smoke Contaminants in Wine Using 13C-Labelled Barley as a Fuel Source

Wildfires are becoming more common in many areas of the world that are also associated with wine grape production, especially the Pacific northwest United States, Australia and even some areas of France.

Red wine oxidation: oxygen consumption kinetics and high resolution uplc-ms analysis

Oxygen is playing a major role in wine ageing and conservation. Many chemical oxidation reactions occur but they are difficult to follow due to their slow reaction times