Terroir 2010 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2010 9 Geology and Soil: effects on wine quality (T2010) 9 Influence of soil type on juice quality in a vineyard from DO Ca Rioja

Influence of soil type on juice quality in a vineyard from DO Ca Rioja

Abstract

Soil plays an important role in wine quality, especially its water holding capacity because it affects the balance between vigour and grape yield. The aim of this work was to study the influence of different soil types on the must quality in a vineyard at DO Ca Rioja. The study was carried out during 2006 and 2007 in a vineyard of eight hectares, located in Oyón in Northern Spain. Four soil types were established according to topography and parent material: deposition (deeper than 110 cm and irregular distribution of organic matter in depth), calcareous red argillite (depth of 85-100 cm, with a heavy clay layer with reddish colour at 85-100 cm), calcareous lutite (depth of 50-100 cm) and finally sandstone (depth of 25-80 cm, and high sand content in depth). Grape samples were collected at 190 grapevines distributed through the whole vineyard for analysing , potential alcohol, total tartaric acid, pH, and K, and anthocyanins concentrations and polyphenols and colour indexes. The influence of soil type on juice quality varied according to the year. In 2006, in the soils with the lower water content (Sandstones) the potential alcohol was the highest (12.92 º), while in 2007, the Red argillite soil (greater water availability) got the greatest potential alcohol (13.72º). The highest acidity was obtained in Depression soil (5.51 g L-1) and was higher in 2007 (5.48 g L-1) than in 2006 (5.07 g L-1). Potassium juice concentration (3068 mg L-1) was higher in the Red argillite soil type due to its higher soil K content, and this caused also the higher pH (3.48) shown in this soil. The anthocyanins content, and polyphenols and colour indexes reached higher values in the Sandstone soil (803 mg L-1, 64 and 24 respectively).

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

Unamunzaga, O. (1), Castellón, A. (1), G. Besga (1), Gallejones, P. (2), Usón, A. (3), Aizpurua, A. (1)

(1) Neiker-Tecnalia. Basque Institute for Agrarian Research and Development; 48.160 Derio, Spain
(2) BC3 Basque Research Centre for the Climate Change. C/ GranVía, Bilbao, Spain
(3) Agricultural and Chemical Engineering School; University of Zaragoza, Huesca, Spain

Contact the author

Keywords

Terroir, Potential alcohol, poliphenols, colour index, anthocyanins, acidity

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Botrytis cinerea: Coconut or Catastrophe? Quantification of γ-Nonalactone in Botrytised and Non-Botrytised New Zealand Wines

g-Nonalactone has been identified as a significant contributor to the aroma profile of a range of wines and is associated with stonefruit and coconut descriptors.

Effect of oenological tannins on wine aroma before and after oxidation: a real-time study by coupling sensory (TDS) and chemical (PTR-ToF-MS) analyses

Polyphenols are important compounds involved in many chemical and sensory wine features. In winemaking, adding oenological tannins claims to have positive impacts on wine stability, protection from oxidation and aroma persistence. Polyphenols are antioxidant compounds by either scavenging reactive oxygen and nitrogen species or chelating Fe2+ ions (1). However, as tannins oxidation leads to the formation of highly reactive species (i.e. ortho-quinones), it is still unclear if they have an effective role toward oxidation of wine aromas (2). In this work, we aim at studying the effect of two commercial tannins (proanthocyanidins, ellagitannins) on red wine flavour (mainly aroma) before and after air exposition.

Metal reducing agents (Fe and Al) as possible agents to measure the dimensions of the hydrogen sulfide (H2S) pool of precursors in wines

Reductive wine fault is characterized by the presence of odors such as rotten eggs or spoiled camembert cheese, originating from hydrogen sulfide (H2S) and methanethiol (MeSH) [1]. These compounds stabilize in polysulfide forms, creating a complex pool of precursors that will revert to both molecules when the environment becomes anoxic [2].

INFLUENCE OF CHITOSAN, ABSCISIC ACID AND BENZOTHIADIAZOLE TREATMENTS ON SAVVATIANO (VITIS VINIFERA L.) WINES VOLATILE COMPOSITION PROFILE

In the last decades the use of bioestimulants in viticulture have been promoted as alternative to conven- tional pesticides. Moreover, as bioestimulants promote the biosynthesis of secondary metabolites in grape berries, several studies had investigated their influence on the accumulation of phenolic com- pounds (Monteiro et al., 2022). However, few studies, so far, are focused on the accumulation of the vo- latile compounds and their impact on the produced wines (Giménez-Bañón et al., 2022; Gomez- Plaza et al., 2012; Ruiz Garcia et al., 2014).
This study was conducted in a single vineyard of white autochthonous grapevine variety Savvatia- no (Vitis vinifera L.) in Muses Valley (Askri, Viotia, Greece). Chitosan (CHT), Abscisic Acid (ABA) and Benzothiadiazole (BTH) were applied.

Il sistema vigneto del Lago di Bolsena: caratterizzazione della produzione di Cannaiola di Marta

Il comprensorio del Lago di Bolsena (VT) è un territorio ad elevata vocazione vitivinicola in cui il paesaggio della vite storicamente persiste e caratterizza la fisionomia dei luoghi. Qui gli agroecosistemi viticoli possiedono una valenza ecologico-ambientale, storico-culturale ed economica di rilievo.