IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Significance of factors making Riesling an iconic grape variety

Significance of factors making Riesling an iconic grape variety

Abstract

Riesling is the iconic grape variety of Germany and accounts for 23% of the German viticulture acreage, which comprises 45% of the worldwide Riesling plantings. Riesling wines offer a wide array of styles from crisp sparkling wines to highly concentrated and sweet Trockenbeerenauslese or Icewines. However, its thin berry skin makes Riesling more vulnerable to detrimental environmental threats than other white wine varieties.

Trying to adapt Riesling to climate change we investigate how to mitigate premature Botrytis infections, the loss of quality and yield due to sunburn or increasing levels of TDN, which causes the unique petrol off-flavor. Weather variation from year to year necessitates an active acidity management, either diminishing acidity by skin maceration or use of lactic acid bacteria but also more recently lowering pH by ion exchange resins or malic acid producing yeast. A strong focus is to enhance intensity and diversity of Riesling aroma by viticultural and oenological measures, which are controlled by sophisticated chemical analysis including a measure of odorless precursors.

Riesling is a highly transparent variety in respect to terroir, deviating strongly in odor and taste due to different bed rocks and soil types, micro climates and inclination of individual vineyards. Applying comprehensive stable isotope dilution analysis of volatiles and sensory evaluation we could demonstrate not only the sensory relevance of terroir, but also how stable these patterns were over five vintages and even individual winemaking measures. Using next generation gen- sequencing techniques to study spontaneous fermentations, we could also reveal the significant impact of site specific microbiomes.

Riesling wines are highly acclaimed for their longevity due to their exciting balance of acidity and sweetness. Re-tasting terroir defined Riesling wines again after four years revealed the expected modification in sensory terms due to aging, but prove that the general differences among the specific terroir expressions were conserved through the maturation process.

Many of these scientific puzzle pieces were successfully implemented by the Riesling producers over the last two decades and they succeeded to improve Riesling wines in each of its multitude of stylistic facets. However, it will be a challenge to preserve their unique and diverse characters in the course of progressive climate change.

DOI:

Publication date: November 22, 2022

Issue: IVAS 2022

Type: Article

Authors

Ulrich Fischer1

1Institute for Viticulture and Oenology, DLR Rheinpfalz, Breitenweg 71, 67435 Neustadt, Germany

Contact the author

Keywords

Riesling, aroma compounds and precursors, sensory evaluation, terroir, acidity management, ageing of wine

Tags

IVAS 2022

Citation

Related articles…

Unravelling Saccharomyces cerevisiae biosynthethic pathways of melatonin, serotonin and hydroxytyrosol  by UPLC-HRMS Isotopic labelling analysis

The main objective is to unravel the yeast biosynthetic pathways for MEL, SER and HT by using the respective labelled amino acids precursors: 15N2-L tryptophan and 13C-tyrosine.
The alcoholic fermentation experiments are performed with two different commercial
S cereviseae yeasts using synthetic must with the addition of the labelled compounds and the bioactive compounds were followed during the fermentation process. Six biological replicates of the fermentations were considered. MEL, SER and HT were analysed by UHPLC coupled to High Resolution Mass Spectrometry (HRMS). Accurate mass determination allowed to unequivocally distinguishing labelled and unlabelled compounds.

New understanding on sulfites reactivity in wine

Sulfur dioxide is widely used during winemaking as an antioxidant and antimicrobial agent. Bisulfite (HSO3−), the predominant form of SO2 at wine pH, reacts with several wine components forming sulfonated adducts.

The use of microwaves during the maceration of Cabernet Sauvignon wines for improving their chromatic characteristics

The use of new technologies such as microwaves (MW) arose in recent years as an efficient alternative to reduce the use of sulfur dioxide (SO2) and as a method for improving wines in terms of color and aroma [1, 2]. MW (non-ionizing electromagnetic waves with frequencies between 300 MHz and 300 GHz) have been widely applied in the food industry in order to reduce processing time and favor food preservation.

What metabolomics teaches us about wine shelf life

The metabolomics era started about 22 years ago, and wine was one of the first foodstuff subjects of analysis and investigation by this technique.

Specificities of red wines without sulfites: which role for acetaldehyde and diacetyl? A compositional and sensory approach.

Sulfur dioxide is the most commonly used additive in oenology to protect wine from oxidation and microorganisms. Once added to wine SO2 is able to react with carbonyl compounds to form carbonyl bisulfites what affects their reactivity.