IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Significance of factors making Riesling an iconic grape variety

Significance of factors making Riesling an iconic grape variety

Abstract

Riesling is the iconic grape variety of Germany and accounts for 23% of the German viticulture acreage, which comprises 45% of the worldwide Riesling plantings. Riesling wines offer a wide array of styles from crisp sparkling wines to highly concentrated and sweet Trockenbeerenauslese or Icewines. However, its thin berry skin makes Riesling more vulnerable to detrimental environmental threats than other white wine varieties.

Trying to adapt Riesling to climate change we investigate how to mitigate premature Botrytis infections, the loss of quality and yield due to sunburn or increasing levels of TDN, which causes the unique petrol off-flavor. Weather variation from year to year necessitates an active acidity management, either diminishing acidity by skin maceration or use of lactic acid bacteria but also more recently lowering pH by ion exchange resins or malic acid producing yeast. A strong focus is to enhance intensity and diversity of Riesling aroma by viticultural and oenological measures, which are controlled by sophisticated chemical analysis including a measure of odorless precursors.

Riesling is a highly transparent variety in respect to terroir, deviating strongly in odor and taste due to different bed rocks and soil types, micro climates and inclination of individual vineyards. Applying comprehensive stable isotope dilution analysis of volatiles and sensory evaluation we could demonstrate not only the sensory relevance of terroir, but also how stable these patterns were over five vintages and even individual winemaking measures. Using next generation gen- sequencing techniques to study spontaneous fermentations, we could also reveal the significant impact of site specific microbiomes.

Riesling wines are highly acclaimed for their longevity due to their exciting balance of acidity and sweetness. Re-tasting terroir defined Riesling wines again after four years revealed the expected modification in sensory terms due to aging, but prove that the general differences among the specific terroir expressions were conserved through the maturation process.

Many of these scientific puzzle pieces were successfully implemented by the Riesling producers over the last two decades and they succeeded to improve Riesling wines in each of its multitude of stylistic facets. However, it will be a challenge to preserve their unique and diverse characters in the course of progressive climate change.

DOI:

Publication date: November 22, 2022

Issue: IVAS 2022

Type: Article

Authors

Ulrich Fischer1

1Institute for Viticulture and Oenology, DLR Rheinpfalz, Breitenweg 71, 67435 Neustadt, Germany

Contact the author

Keywords

Riesling, aroma compounds and precursors, sensory evaluation, terroir, acidity management, ageing of wine

Tags

IVAS 2022

Citation

Related articles…

Improved analysis of isomeric polyphenol dimers using the 4th dimension of trapped ion mobility spectrometry – mass spectrometry

Dehydrodicatechins have recently received attention as oxidation markers especially in grapes and wine. Their analysis mainly uses LC-MS/MS which is able to differentiate them from their natural isomers (dimeric procyanidins), based on specific fragments

Untargeted LC-HRMS analysis to discover new taste-active compounds in spirits.

​For several years, the chemistry of taste has aroused high interest both from academics and industrials. Plant kingdom is a rich and reliable source of new taste-active compounds. Many sweet, bitter or sour molecules have been identified in various plants [1]. They belong to diverse chemical families and their sensory properties are strongly affected by slight structural modifications. As a consequence, the investigation of natural taste-active products in a given matrix appears as a major challenge for chemists. Such studies are particularly relevant in oenology since they allow a better understanding of wine and spirit taste.

The aroma diversity of Italian white wines: a further piece added to the D-Wines project

The wide ampelographic heritage of the Italian wine grape varieties represents a richness in terms of biodiversity and potential market value.

Influence of two yeast strains and different nitrogen nutrition on the aromatic compounds in Lugana wine

Lugana Protected Designation of Origin (PDO) wines are made from Turbiana grapes. The aroma of Lugana wines results from the combined contribution of esters, terpenes, norisprenoids, sulfur compounds and the benzenoid methyl salicylate. This study aims to investigate how volatile aroma compounds are affected by different nitrogen supplies and yeast strains. Wines were produced with a standard protocol with 2021 Turbiana grapes with two different yeasts Zymaflore Delta e Zymaflore X5 (Laffort, France).During the alcoholic fermentation of the must, when H2S appeared, additions of various nitrogen supply were made: inorganic nitrogen, organic nitrogen, a mix of inorganic and organic nitrogen and organic nitrogen with an addition of pure methionine. During wine fermentation, a daily measurement of hydrogen sulfide was carried out.

Electrochemical approaches in wine analysis 

There is a high demand in the wine industry for analytical methods able to provide useful information to support the decision-making process in the vineyard and in the winery. Ideally these methods should be rapid (e.g.